Question


14.12 Consider the laminar boundary layer that develops on a flat plate aligned with the freestream flow direction. The flow is incompressible, the freestream flow speed is U and the pressure is constant in the flow direction, i.e., op/az = 0. The vertical velocity component is constant and equal to-t Determine the horizontal velocity component, u(x, v). Is there any restriction on the value of u? Uoo 0
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Lu ite 2l 고。

Add a comment
Know the answer?
Add Answer to:
14.12 Consider the laminar boundary layer that develops on a flat plate aligned with the freestream...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile...

    Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile is given as u = U sin () a. Determine the boundary layer thicknesses 8, 8, as a function of x. Express in terms of Reynolds number. b. Using momentum integral theory, determine the wall shear stress tw, as a func. of x. Express in terms of Reynolds number. C. Determine the friction drag coefficient, Cof-

  • (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given...

    (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given by 0-30:48) where U is the free stream velocity, y is the distance measured normal to the surface of the plate and is the boundary layer thickness. Determine equations for (i) the momentum thickness , and (8 marks) (ii) the boundary layer thickness d. (7 marks)

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

  • Problem #3 Air flows over a flat plate at 4 m/s. An approximation for the x...

    Problem #3 Air flows over a flat plate at 4 m/s. An approximation for the x component of velocity in the in- compressible laminar boundary layer is a sinusoidal variation from u-0 at the surface (y-0) to the freestream velocity, U, at the boundary-layer edge (y-5). The equation for the profile is u-Usin( %), where cVx and c is a constant. The boundary layer is 9 mm thick 1 m from the edge of the plate. (a) Predict the boundary-layer...

  • X Incorrect. The boundary-layer thickness, 5, on a smooth flat plate in an incompressible flow without...

    X Incorrect. The boundary-layer thickness, 5, on a smooth flat plate in an incompressible flow without pressure gradients depends on the freestream speed, U, the fluid density, p, the fluid viscosity, u, and the distance from the leading edge of the plate, x. (a) Express these variables in dimensionless form and (b) calculate dimensionless parameter (proportional to x) with x 0.150 m, p 385 kg/m3, U 0.147 m/s, u 0.2 x 104 N-s/m2. Click here to enter or edit your...

  • 1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the...

    1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the conditions u = 0.993U at y = S. (a) Use this 0 at y 0 and u= profile in the two-dimensional momentum integral relation to evaluate the approximate boundary layer thickness variation S(x). Assume zero pressure gradient. (b) Now explain why your result in part (a) is deplorably inaccurate compared to the exact Blasius solution Scanned uww Cam Scanner 1- Consider laminar flat...

  • Consider air flows with velocity of U?=U= 10 m/s over a semi-finite smooth flat plate with...

    Consider air flows with velocity of U?=U= 10 m/s over a semi-finite smooth flat plate with L=97 cm long. Calculate the followings by assuming ? = 1.568 x 10-5 m2/s and ?=1.177 kg/m3. Figure 1 : Boundary layer over a flat plate Consider air flows with velocity of U?=U=10 m/s over a semi-finite smooth flat plate with L=97 cm long. Calculate the followings by assuming ? = 1.568 x 10-5 m2/s and ?=1.177 kg/m3. b) Under some flow and boundary...

  • 22. Consider the momentum integral equation turbulent boundary layer on an isothermal flat plate. The boundary...

    22. Consider the momentum integral equation turbulent boundary layer on an isothermal flat plate. The boundary layer is tripped at x-0. Assume constant properties and velocity. An experiment conducted to measure u and τ showed that for a steady, and τ= 0.0228 ρu® a) Determine the local friction coefficient, Cf/2 b) Using Colburn analogy, obtain an expression for the local Nusselt number.

  • MATLAB (2 points) Challenge. Create a SCRIPT file called thirdOrderDE.m 5) Blasius showed in 1908 that the solution to the incompressible flow field in a laminar boundary layer on a flat plate is...

    MATLAB (2 points) Challenge. Create a SCRIPT file called thirdOrderDE.m 5) Blasius showed in 1908 that the solution to the incompressible flow field in a laminar boundary layer on a flat plate is given by the solution of the fol- lowing third-order ordinary nonlinear differential equation Rewrite this equation into a system of three first-order equations, using the following substitutions: h,(m) = f d2 Solve using the ode45 function with the following initial conditions: hi (0) = 0 hs(0) =...

  • Consider the steady, incompressible flow of depth h of a liquid of known density ρ and...

    Consider the steady, incompressible flow of depth h of a liquid of known density ρ and unknown viscosity µ down a flat plate as shown in Figure 1. Air is the fluid above the liquid layer. The force of gravity is in the vertical direction with acceleration g, and the plate is at an angle θ with respect to the horizontal. Assuming the coordinate system as shown, with x aligned with the flow direction, and y normal to the plate,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT