Question

2. The graph in the shows a pV diagram with reversible work for 3.0 moles of ideal argon gas. Process ab is isobaric, bc isch
1 0
Add a comment Improve this question Transcribed image text
Answer #1

I 0 2XTO 3208k NR @ Pc = ax 105 Pa , Vc = o-oum , n=3 : Te = leve - 2X10*x.com -13208K 3X 8.314 c-a process is adiabatic Pe= 610541 3 I . . W = 9 - uld = 1509055-9054 3 J T6036.2 J} b o iso chanc Tw= o . 40 =0u = neret = 3% 3%81314132.08 – 32268)

Add a comment
Know the answer?
Add Answer to:
2. The graph in the shows a pV diagram with reversible work for 3.0 moles of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A heat engine takes for 0.40 mol of ideal H2 gas around the cycle shown in the pV- diagram.

    A heat engine takes for 0.40 mol of ideal H2 gas around the cycle shown in the pV- diagram.Ta=400KTb=800KTc=592K Process a→b is at constant volume, process b→c is adiabatic, and process c-> a is at constant pressure of 2 atm. The value of y for this gas is 1.40. (a) Find the pressure and volume at points a, b and c (b) Calculate Q, W, and AU for each of the processes. (c) Find the net work done by the gas in the cycle (d)...

  • 1. A crackpot inventor designs the following heat engine. (An annotated PV plot might help.) Step...

    1. A crackpot inventor designs the following heat engine. (An annotated PV plot might help.) Step D: Starting at State A (PA, VA, and TA25.0 °C), the gas undergoes a reversible and isothermal expansion until it reaches State B (PB = 1.000 atm, VB, and TB). Step : A dry ice / acetone bath is used to isochorically bring the gas to State C (Pc, Vc, and Tc -78.5 °C) Step : The gas undergoes a reversible adiabatic compression until...

  • TB4 The PV diagram in the figure is for n moles of an ideal monatomic gas. The gas is initially at point A. The paths AD and BC represent isothermal changes. R is the universal gas constant. Let the...

    TB4 The PV diagram in the figure is for n moles of an ideal monatomic gas. The gas is initially at point A. The paths AD and BC represent isothermal changes. R is the universal gas constant. Let the pressures, volumes, and temperatures at the labeled points be denoted as PA , PB, etc., and VA , VB, etc., and TA, TB, etc., respectively. If the system is brought to point C along th<e path A-»E->C, what is the heat...

  • A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram bel...

    A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram below. Process 1 → 2 is at constant volume, process 2-) 3 is adiabatic, and process 3-1 is at a constant pressure of P = 2.00 atm. The value of r for this gas is 1.4 2,7-600K T,-300 K T, 492 K 0 (a) Find the pressure and volume at points 1, 2, and 3. pressure (Pa) volume (m3) point 1 point...

  • Please help me understand and show work! thank ! The figure shows five processes plotted in...

    Please help me understand and show work! thank ! The figure shows five processes plotted in the P-v plane for an ideal gas (ab, bc, c-d, da, as well as the isothermal process a c at constant temperature T.) The system is closed so the number of moles (and particles) does not change during any process. Let P2 10 Pa, P4 x 105 Pa andv0.0025 m3/mol. Pab (a) Find the temperature T (b) Find the specific volume v2 c) Find...

  • The pV diagram in the figure shows a cycle of a heat engine that uses 0.250...

    The pV diagram in the figure shows a cycle of a heat engine that uses 0.250 mole of an ideal gas having ?=1.40. The curved part ab of the cycle is adiabatic. Part A Find the pressure of the gas at point a. (SOLVED) Pa = 12.3 atm ---- Part B How much heat enters this gas per cycle? Qin = J ---- Part C Where does the entering of heat happen? ---- Part D How much heat leaves this...

  • 0.25 moles ofa monatomic ideal gas starts from point a (400Pa and Im3) in the diagram as shown. It undergoes a constant...

    0.25 moles ofa monatomic ideal gas starts from point a (400Pa and Im3) in the diagram as shown. It undergoes a constant pressure expansion from a to b (2m3); an isothermal process from b to c (3.2m3); a constant volume process c to d (125Pa); and an isothermal compression from d back to a. Problems 2-5 400 b a 300 2a. Find the temperature values Ta, Tb, Te and Td. 200 100 3 4 1 2 volume (m3) 2b. Find...

  • Two moles of a monatomic ideal gas goes through the cycle represented in Figure below. TA=420...

    Two moles of a monatomic ideal gas goes through the cycle represented in Figure below. TA=420 K; VA=0.025 m3 and VB=0.045 m3 . R=8.314 J/mol K.    a) Identify the process A-B, B-C and C-A (3) b) Calculate PA , PB and TC , the pressures and temperature reached in A,B and C. [9 marks] c) Complete the following table (on a separate document to be attached). Detail your work. [30 marks] i) A-B (8) ii) B-C (8) iii) C-A...

  • (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an...

    (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an ideal gas. The internal energy of the gas changes by the following amounts: ΔUa→b=+4040J, ΔUb→c=−4848J, ΔUc→d=−808J, and ΔUd→a=+1616J Part A How much heat goes into this gas per cycle? Express your answer in joules to three significant figures. Answer: ______ J Part B Where in the cycle does the heat go into the gas? Select all that apply. c→d b→c d→a a→b Part C...

  • NA 6.022 x 103 molecules/mole k 1.381 x 1023 J/K c 2.997 x 108 m/s 1...

    NA 6.022 x 103 molecules/mole k 1.381 x 1023 J/K c 2.997 x 108 m/s 1 cal 4.186 J mp 1.673 x 1027 kg 1 atm 1.013 bar h 6.626 x 10-34 Js R 8.315 J/(mol K) 1 bar 10% Pa 1. (15 points) 2.0 moles of a monatomic ideal gas undergo a 3 step cyclic process. The process begins in state A at 1.00 atm, 297 K. The gas is heated slowly at constant pressure until it reaches state...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT