Question

The pV diagram in the figure shows a cycle of a heat engine that uses 0.250...

The pV diagram in the figure shows a cycle of a heat engine that uses 0.250 mole of an ideal gas having ?=1.40. The curved part ab of the cycle is adiabatic.

p (atm) -V(m2) 0.0020 0.0090

Part A

Find the pressure of the gas at point a. (SOLVED)

Pa = 12.3 atm

----

Part B

How much heat enters this gas per cycle?

Qin = J

----

Part C

Where does the entering of heat happen?

----

Part D

How much heat leaves this gas in a cycle?

Q leav = J

----

Part E

Where does the leaving of heat of this gas occur?

----

Part F

How much work does this engine do in a cycle?

A = J

----

Part G

What is the thermal efficiency of the engine?

e = %

p (atm) -V(m2) 0.0020 0.0090
0 0
Add a comment Improve this question Transcribed image text
Answer #1

In an adiabatic process The pressure of the gas at point a is, RI (1.5atm)(0.0090 ㎡ 12.3 atm 12 atm 0.0020 nm The amount of h

Add a comment
Know the answer?
Add Answer to:
The pV diagram in the figure shows a cycle of a heat engine that uses 0.250...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The PV - diagram in the figure below shows a cycle of a heat engine that uses 0.250 mol of an ideal gas with γ = 1.40....

    The PV - diagram in the figure below shows a cycle of a heat engine that uses 0.250 mol of an ideal gas with γ=1.40. The process a b is adiabatic. (1 atm=105 Pa)(i) Calculate the pressure of the gas at point a.(ii) Calculate how much heat enters this gas per cycle. Indicate the process(es) where this happens.(iii) Calculate how much heat leaves this gas in a cycle. Indicate the process(es) where this occurs.(iv) Calculate how much work the engine...

  • (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an...

    (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an ideal gas. The internal energy of the gas changes by the following amounts: ΔUa→b=+4040J, ΔUb→c=−4848J, ΔUc→d=−808J, and ΔUd→a=+1616J Part A How much heat goes into this gas per cycle? Express your answer in joules to three significant figures. Answer: ______ J Part B Where in the cycle does the heat go into the gas? Select all that apply. c→d b→c d→a a→b Part C...

  • (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an...

    (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an ideal gas. The internal energy of the gas changes by the following amounts: ΔUa→b=+4040J, ΔUb→c=−4848J, ΔUc→d=−808J, and ΔUd→a=+1616J How much heat is ejected by the gas per cycle? Express your answer in joules to three significant figures. How much work does this engine do each cycle? Express your answer in joules to three significant figures. What is the thermal efficiency of the engine? Express...

  • A heat engine takes for 0.40 mol of ideal H2 gas around the cycle shown in the pV- diagram.

    A heat engine takes for 0.40 mol of ideal H2 gas around the cycle shown in the pV- diagram.Ta=400KTb=800KTc=592K Process a→b is at constant volume, process b→c is adiabatic, and process c-> a is at constant pressure of 2 atm. The value of y for this gas is 1.40. (a) Find the pressure and volume at points a, b and c (b) Calculate Q, W, and AU for each of the processes. (c) Find the net work done by the gas in the cycle (d)...

  • A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram bel...

    A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram below. Process 1 → 2 is at constant volume, process 2-) 3 is adiabatic, and process 3-1 is at a constant pressure of P = 2.00 atm. The value of r for this gas is 1.4 2,7-600K T,-300 K T, 492 K 0 (a) Find the pressure and volume at points 1, 2, and 3. pressure (Pa) volume (m3) point 1 point...

  • The figure (Figure 1)shows the cycle for a heat engine that uses a gas having γ...

    The figure (Figure 1)shows the cycle for a heat engine that uses a gas having γ =1.25. The initial temperature is T1 =300K, and this engine operates at 30 cycles per second. HW21 Item 13 Review Part A The figure (Figure 1)shows the cycle for a heat engine that uses a gas having γ = 1.25. The initial temperature is T1 = 300 K, and this engine operates at 30 cycles per second What is the power output of the...

  • An unusual heat engine combines four different processes to acchieve a complete engine cycle shown below....

    An unusual heat engine combines four different processes to acchieve a complete engine cycle shown below. there is a 1.60 moles of gas used in the engine, and the gas behaves like a monatomic ideal gas. Each engine cycle takes 0.020s to complete and involves to absorption of 4.73x10^4 J of heat to the outside enviroment. temperature pressure volume A 1800 K 6.0 x 10^5 Pa 0.0400 m^3 B 1800 K 2.9 x 10^5 Pa 0.0825 m^3 C 1175 K...

  • A certain heat engine operating on a Carnot cycle absorbs 370 J of heat per cycle...

    A certain heat engine operating on a Carnot cycle absorbs 370 J of heat per cycle at its hot reservoir at 145 degree C and has a thermal efficiency of 24.0% By how much does the engine change the entropy of the world each cycle? Express your answer to two significant figures and include the appropriate units. What mass of water could this engine pump per cycle from a well 25.0 m deep? Express your answer to two significant figures...

  • A heat engine uses a diatomic gas that follows the pV cycle in the figure.

    a) Determine the pressure, volume, and temperature at point 2.b) Determine ΔE th,Ws, and Q for the process 1→2.c) Determine ΔEΔE th,Wsth,Ws, and QQ for the process 2→32→3.d) Determine ΔEΔE th,Wsth,Ws, and QQ for the process 3→13→1.e)How much work does this engine do per cycle?f) What is its thermal efficiency? 

  • 3. An ideal Carnot engine has an input of 150 J of heat per cycle at...

    3. An ideal Carnot engine has an input of 150 J of heat per cycle at its high-temperature reservoir, which is maintained at 135 °C. The engine has a thermal efficiency of 22.0%. a. How much work does this engine do per cycle? b. How much heat does this engine output to its low-temperature reservoir per cycle? c. What is the temperature of the low-temperature reservoir? d. How many cycles would this engine have to go through to lift a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT