Question

TB4 The PV diagram in the figure is for n moles of an ideal monatomic gas. The gas is initially at point A. The paths AD and

0 0
Add a comment Improve this question Transcribed image text
Answer #1

werk done From AE CU ol 200 be came the r, y =o, p.dy e→ c- change m gmternal energy ea+y il a S ate funchen. Lets choose petthere y no memton So here S to colcdate werk dome om -3 ine In Veluune

Add a comment
Know the answer?
Add Answer to:
TB4 The PV diagram in the figure is for n moles of an ideal monatomic gas. The gas is initially at point A. The paths AD and BC represent isothermal changes. R is the universal gas constant. Let the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The PV diagram below represents 2.79 mol of an ideal monatomic gas. The gas is initially at point A. The paths AD and B...

    The PV diagram below represents 2.79 mol of an ideal monatomic gas. The gas is initially at point A. The paths AD and BC represent isothermal changes. If the system is brought to point C along the path ABC, find the following: P atm 4.0 1.0 4.01 20.0 V.L (a) the initial and final temperatures of the gas initia final b) the work done by the gas (c) the heat absorbed by the gas eBook The PV diagram below represents...

  • The PV diagram below represents 3.21 mol of an ideal monatomic gas. The gas is initially at point A. The paths AD and B...

    The PV diagram below represents 3.21 mol of an ideal monatomic gas. The gas is initially at point A. The paths AD and BC represent isothermal changes. If the system is brought to point C along the path ABC, find the following: Р, atm 4.0 1.0 200 VL 4.01 (a) the initial and final temperatures of the gas initial 60.9 final 75.9 (b) the work done by the gas kJ (c) the heat absorbed by the gas kJ The PV...

  • A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different...

    A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different paths for expansion. Path 1: The gas expands quasistatically and isothermally to (Va, Pz. T2) Path 2: First the gas expands quasistatically and adiabatically (V2, P.,T-),where you will calculate P T. Then the gas is heated quasistically at constant volume to (Va. P2 T1). a. Sketch both paths on a P-V diagram. b. Calculate the entropy change of the system along all three segments...

  • An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram...

    An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram below. The initial volume is 0.02 m3 and the final volume is 0.10 m3 20 10 01 (a) Calculate the magnitude, or absolute value, of the Work done on the gas in this process. (Be careful with units. Your answer should be in Joules. 1 atm 1.013x 105 Pa.) (b)The work done ON the gas is: O positive O negative (c) The initial temperature...

  • At point D in the figure below, the pressure and temperature of 2.00 mol of an...

    At point D in the figure below, the pressure and temperature of 2.00 mol of an ideal monatomic gas are 2.00 atm and 360 K, respectively. The volume of the gas at point B on the PV diagram is three times that at point D and its pressure is twice that at point C. Paths AB and CD represent isothermal processes. The gas is carried through a complete cycle along the path DABCD. Determine the total amount of work done...

  • 4. A heat engine contains an ideal monatomic gas confined to a cylinder by a movable...

    4. A heat engine contains an ideal monatomic gas confined to a cylinder by a movable piston. The gas starts at point A shown in the figure, where T 3.00 x102 K. The process B C is an isothermal expansion. (a) Find the number of moles of the gas and the temperature at point B. (b) Find AU, Q (the heat flow), and W (the work done by the system) for the isovolumetric process A B, (c) the isothermal expansion...

  • Part A:Refer to diagram 2. A flask contains 85.2 moles of a monatomic ideal gas at...

    Part A:Refer to diagram 2. A flask contains 85.2 moles of a monatomic ideal gas at pressure 6.9 atm and volume 13.4 liters (point A on the graph. Now, the gas undergoes a cycle of three steps: - First there is an isothermal expansion to pressure 3.65 atm (point B on the graph). - Next, there is an isochoric process in which the pressure is raised to P1 (point C on the graph). - Finally, there is an isobaric compression...

  • 0.25 moles ofa monatomic ideal gas starts from point a (400Pa and Im3) in the diagram as shown. It undergoes a constant...

    0.25 moles ofa monatomic ideal gas starts from point a (400Pa and Im3) in the diagram as shown. It undergoes a constant pressure expansion from a to b (2m3); an isothermal process from b to c (3.2m3); a constant volume process c to d (125Pa); and an isothermal compression from d back to a. Problems 2-5 400 b a 300 2a. Find the temperature values Ta, Tb, Te and Td. 200 100 3 4 1 2 volume (m3) 2b. Find...

  • (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an...

    (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an ideal gas. The internal energy of the gas changes by the following amounts: ΔUa→b=+4040J, ΔUb→c=−4848J, ΔUc→d=−808J, and ΔUd→a=+1616J Part A How much heat goes into this gas per cycle? Express your answer in joules to three significant figures. Answer: ______ J Part B Where in the cycle does the heat go into the gas? Select all that apply. c→d b→c d→a a→b Part C...

  • (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an...

    (Figure 1) shows a pV diagram for a heat engine that uses 1.40 moles of an ideal gas. The internal energy of the gas changes by the following amounts: ΔUa→b=+4040J, ΔUb→c=−4848J, ΔUc→d=−808J, and ΔUd→a=+1616J How much heat is ejected by the gas per cycle? Express your answer in joules to three significant figures. How much work does this engine do each cycle? Express your answer in joules to three significant figures. What is the thermal efficiency of the engine? Express...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT