Question

Part B: Start with the 2-D Cartesian Navier-Stokes equations, explain which terms you can cross and why. Write the obtained d

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ーナリ Veloci paalle, to te plats. d + (o.su)

Add a comment
Know the answer?
Add Answer to:
Part B: Start with the 2-D Cartesian Navier-Stokes equations, explain which terms you can cross and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Tutorial 2. Incompressible Navier-Stokes equations 18 September, 4-5 pm in FN2 In Lecture Notes 1 the Navier-Stokes equ...

    Tutorial 2. Incompressible Navier-Stokes equations 18 September, 4-5 pm in FN2 In Lecture Notes 1 the Navier-Stokes equations (momentum balance) for incompressible flow were derived. They were eventually written in the following form dr In this equation, the viscosity μ and the density ρ are constants. We now consider two simple flow configurations. Config. 1. The steady state flow of a liquid in the space between two very large static parallel plates at distance H of each other in the...

  • A. In the table below, identify which of the circled terms of the governing equations can...

    A. In the table below, identify which of the circled terms of the governing equations can be neglected by the given assumption. Write the number of the term in the table. Some assumptions relate to multiple terms, include them all. B.  Write the mathematical equations describing the appropriate boundary conditions and identify them in words. C.  Applying the appropriate boundary conditions, solve the differential equation remaining after appropriate terms have been neglected to determine the velocity profile in the film: d^2(w)/dx^2 =...

  • Please answer the most questions you can. 1 Which terms in the Navier-Stokes equations are neglected...

    Please answer the most questions you can. 1 Which terms in the Navier-Stokes equations are neglected in the Euler's equation? Discuss briefly the applicability of the Euler's equation. 2 Is Bernoulli equation valid in the boundary layers? Why? 3 In the Buckingham Pi theorem procedure, If we choose 3 repeating parameters (8%) (6%) and in total there are 6 dimensional parameters, then, how many nondimensional (696) parameters will show in the final functional relation f(?) 4 In chapter 7, when...

  • 1. Fluid between parallel plates down an inclined plane (gravity setler). Fluid is flowing between parallel...

    1. Fluid between parallel plates down an inclined plane (gravity setler). Fluid is flowing between parallel plates, at an angle of β to the vertical. Assume δ<<w, L. th a momentum balance on a differential shell, and using the notation shown below, derive: i. the velocity distribution in the fluid, v,-f(x/b), and sketch result ii. the shear stress distribution in the fluid, -f(x/ö), and sketch result. iii. the volumetric flow rate iv. the maximum velocity, and the position x where...

  • Two horizontal plates with infinite length and width are separated by a distance H in the...

    Two horizontal plates with infinite length and width are separated by a distance H in the zdirection. The bottom plate is moving at a velocity vx=U. The incompressible fluid trapped between the plates is moving in the positive x-direction with the bottom plate. Align gravity with positive z. Assume that the flow is fully-developed and laminar. If the systems operates at steady state and the pressure gradient in x-direction can be ignored, do the following: 1. Sketch your system. 2....

  • 2- (40 pts) Using Navier-Stokes equations, in class we developed the velocity profile between two stationary...

    2- (40 pts) Using Navier-Stokes equations, in class we developed the velocity profile between two stationary infinite parallel plates for a laminar, fully developed, steady flow. Here is the exact same flow: u(y) = 2 ( 0) (02 – hy) v= 0 a) Find the expression for average velocity for such flow. b) Use the average velocity you calculated in (a) to find the expression for volume flow rate per unit width into the page. c) If at x=105 m...

  • An important problem in chemical engineering separation equipment involves thin liquid films flow...

    An important problem in chemical engineering separation equipment involves thin liquid films flowing down vertical walls due to gravity, as shown in this figure yV A. Assume that the wall is long and wide compared to the film thickness, with steady flow that is laminar and fully developed: u= v=0 and w w(x). Using a force balance on a rectangular differential element, derive an expression relating g, p, and τΧΖ . Use τΧΖ-n(-_ +--) for a Newtonian fluid to convert...

  • 4. An incompressible fluid with viscosity u and density p was contained in pipe of length...

    4. An incompressible fluid with viscosity u and density p was contained in pipe of length L and radius R. Initially the fluid is in rest. At t=0, a pressure difference of AP is applied across the pipe length which induces the fluid flow in axial direction (V2) Only varies with time (t) and pipe radius (r). There is no effect of gravity. To describe the fluid flow characteristics, after the pressure gradient is applied, answer the following questions: a)...

  • An important problem in chemical engineering separation equipment involves thin liquid films flowing down vertical walls...

    An important problem in chemical engineering separation equipment involves thin liquid films flowing down vertical walls due to gravity, as shown in this figure yV A. Assume that the wall is long and wide compared to the film thickness, with steady flow that is laminar and fully developed: u= v=0 and w w(x). Using a force balance on a rectangular differential element, derive an expression relating g, p, and τΧΖ . Use τΧΖ-n(-_ +--) for a Newtonian fluid to convert...

  • Consider the steady, laminar flow of two liquids, A and B, with viscosities HA-μ and μΒ...

    Consider the steady, laminar flow of two liquids, A and B, with viscosities HA-μ and μΒ 21, respectively, between infinite parallel plates at 2- a, as shown in the diagram below. The plate at 2 a is fixed, while the plate at 2a moves with constant velocity -Vi, where V0. The liquids do not mix, and each forms a layer of depth a. There is an applied pressure gradient acting on both liquids, given by ▽p--Ci (where C > 0...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT