Question

Two masses (M1 = 5.0kg; M2 = 3.0kg) are connected to a pulley with a moment...

Two masses (M1 = 5.0kg; M2 = 3.0kg) are connected to a pulley with a moment of inerial, I =1.0kg m2, and a radius, R = 0.3 m by a cord. The pulley rotates about a frictionless axle and the cord can be considered massless.

What is the tension in the portion of the cord that is attached to M1?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Well.......!!! I can help you.......!!!

I have attached the answer as image files below

=o.in M, M2 M2 乙GOOD LUCK........!!!

Add a comment
Know the answer?
Add Answer to:
Two masses (M1 = 5.0kg; M2 = 3.0kg) are connected to a pulley with a moment...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m2 = 15.0 kg is connected by a light cord to a mass m1...

    A mass m2 = 15.0 kg is connected by a light cord to a mass m1 = 15.0 kg, which slides on a smooth horizontal surface. The pulley, of mass M = 1.00 kg, rotates about a frictionless axle and has a radius R = 0.200 m and a moment of inertia I = 0.0900 kg-m2 . The cord does not slip on the pulley. a) What is the magnitude of the acceleration of m1? b) What is the tension...

  • Two masses are connected by a cord passing over a pulley of radius R and moment...

    Two masses are connected by a cord passing over a pulley of radius R and moment of inertia I. Mass m1 slides on a frictionless surface, and m2 hangs freely. Determine a) a formula for the angular momentum of the system about the pulley axis, as a function of the speed v of mass m1 or m2; b) if angular momentum is conserved; c) The acceleration of the masses.

  • An Atwood's machine consists of two masses, mi and m2, which are connected by a massless...

    An Atwood's machine consists of two masses, mi and m2, which are connected by a massless inelastic cord that passes over a pulley. If the pulley has radius R and moment of inertia I about its axle, determine the acceleration of the masses mi and m2, and compare to the situation in which the moment of inertia of the pulley is ignored. [Hint: The tensions FTI and FT2 are not necessarily equal.] T2

  • An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass

    An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass m2 = 3.00 kg on a frictionless surface (see figure). The pulley rotates about a frictionless axle and has a moment of inertia of 0.570 kg · m² and a radius of 0.310 m. Assume that the cord does not slip on the pulley. (a) Find the acceleration of the two masses. m/s2 (b) Find the tensions T1 and T2

  • Two masses M1=2kg and M2 are attached by a massless cord over a solid pulley wheel...

    Two masses M1=2kg and M2 are attached by a massless cord over a solid pulley wheel of mass M=4kg, and radius R=5cm. Static Friction between the cord and the pulley makes the pulley rotate counter-clockwise when the system is released from rest, M1 accelerates with a magnitude of 3.92 m/s2. a) Draw and label the forces acting on the two blocks, and the pulley. (6 points) b) Find the tension in the cord between the pulley and M1 (6 points)...

  • A uniform spherical shell of mass M = 3.0kg and radius R = 12.0...

    A uniform spherical shell of mass M = 3.0kg and radius R = 12.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 2.38×10-3 kg m2 and radius r = 5.0 cm, and its attached to a small object of mass m = 1.0 kg. There is no friction on the pulley's axle; the cord does not slip on...

  • Two blocks of masses m1 and m2 are connected by a light cord that passes over...

    Two blocks of masses m1 and m2 are connected by a light cord that passes over a pulley of mass M, as shown. Block m2 slides on a frictionless horizontal surface. The blocks and pulley are initially at rest. When m1 is released, the blocks accelerate and the pulley rotates. The total angular momentum of the system of the two blocks and the pulley relative to the axis of rotation of the pulley isthe same at all times.proportional to I1,...

  • an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720...

    an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720 kg attached to it. derive the equations for and calculate the acceleration of the masses and the tension in the string

  • 9. (10 points) Two masses, m1 and m2 are connected by a massless chord over a...

    9. (10 points) Two masses, m1 and m2 are connected by a massless chord over a disc of radius R and mass M as shown in the figure. m1 m2. The chord does not slip on the disk, which can turn on a frictionless bearing. The masses are then released. a) What is the angular acceleration of the disc? b) What is the ratio of the kinetic energy of the disc to the total kinetic energy of the two masses...

  • You have two equal masses m1 and m2 and a spring with a spring constant k....

    You have two equal masses m1 and m2 and a spring with a spring constant k. The mass m1 is connected to the spring and placed on a frictionless horizontal surface at the relaxed position of the spring. You then hang mass m2,  connected to mass m1 by a massless cord, over a pulley at the edge of the horizontal surface. When the entire system comes to rest in the equilibrium position, the spring is stretched an amount d1 as shown...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT