Question

an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720...

an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720 kg attached to it. derive the equations for and calculate the acceleration of the masses and the tension in the string

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached...

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an acceleration a = g*(m1+m2)/)m1−m2 Suppose that m and are measured as m1 = 100 +- 1 gram and m2 = 50 +- 1 gram. Derive a formula of uncertainty in the expected acceleration in...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an accelerationSuppose that m1 and m2 are measured as m1=100±1 gram and m2=50±1 gram. Derive a formula of the uncertainty in the expected acceleration in terms of the masses and their uncertainties, and then calculate δα for...

  • Mass M1 = 4 kilograms is suspended on a massless frictionless pulley and is connected with...

    Mass M1 = 4 kilograms is suspended on a massless frictionless pulley and is connected with a massless rope to Mt = 2 kg, a mass on a frictionless table. Mt is attached to another suspended mass M2 = 6 kg with a massless rope over a massless frictionless pulley. (diagram attached) Find the velocity of each of the masses when M2 falls 20 cm. What is the acceleration of the system? DE

  • 5. An Atwood machine consists of two masses mi and m2 (with mi > m2) attached...

    5. An Atwood machine consists of two masses mi and m2 (with mi > m2) attached to the ends of a light string that passes over a light, frictionless pulley Problem Setup1 FBD ty m2 mi 1-png When the masses are released, the mass mi is easily shown to accelerate down with an acceleration mi m2 mi +m2 Suppose that and m 2 are measured as mn = 100 ± 1 and mg = 50 ± 1, both in grams....

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

  • An Atwood Machine is composed of a frictionless pulley with two cubes connected by a string'...

    An Atwood Machine is composed of a frictionless pulley with two cubes connected by a string' Cube A, on the left, has a mass of 4.0kg and cube B, on the right has a mass of 6.0kg. The pulley has a rotational inertia of 1/2 MR2. How does that affect the acceleration of the masses. Would tension A be the same as tension B? Why or why not?

  • In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.00 kg. The...

    In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.00 kg. The masses of the pulley and string are negligible by comparison. The pulley turns without friction and the string does not stretch. The lighter object is released with a sharp push that sets it into motion at vi = 2.20 m/s downward. (a) How far will m1 descend below its initial level? 1 m In the Atwood machine shown below, m1 = 2.00 kg and...

  • The two masses "m1" and "m2" shown in the figure connected by a massless string and...

    The two masses "m1" and "m2" shown in the figure connected by a massless string and are being dropped by a constant horizontal force F a rough horizontal surface. F = 100 N, m1=10 kg, m2=15 kg coefficient kinetic friction between each mass and M_k= 0.2 expression: M2-->M1--> F Questions: 1) Calculate the friction force on M2 2) Calculate the acceleration of the system of the 2 masses 3) Calculate the tension T in the string. H Mz mi

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 41.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 6.25 kg and is on an incline of 31.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT