Question

2. A two-mass translational mechanical system has the following mathematical model: mž +bi,+k, (*; - x)=f,0) m,ž, +b,X, +k, (

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
2. A two-mass translational mechanical system has the following mathematical model: mž +bi,+k, (*; - x)=f,0)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Figure 4 shows a two-mass translational mechanical system. The applied force falt) acts on mass mi....

    Figure 4 shows a two-mass translational mechanical system. The applied force falt) acts on mass mi. Displacements z1 and 22 are absolute positions of masses mi and m2, respectively, measured relative to fixed coordinates (the static equilibrium positions with fa(t) = 0). An oil film with viscous friction coefficient b separates masses mi and m2. Draw the free body diagram and derive the mathematical model of the vibration system using the diagram. falt) Oil film, friction coefficient b K m2...

  • Problem 2: Transfer Functions of Mechanical Systems. (20 Points) A model sketch for a two-mass mechanical...

    Problem 2: Transfer Functions of Mechanical Systems. (20 Points) A model sketch for a two-mass mechanical system subjected to fluctuations (t) at the wall is provided in figure 2. Spring k, is interconnected with both spring ka and damper Os at the nodal point. The independent displacement of mass m is denoted by 1, the independent displacement of mass m, is denoted by r2, and the independent displacement of the node is denoted by ra. Assume a linear force-displacement/velocity relationship...

  • 2. (a) Derive the mathematical model for the system shown; no need to simplify. (b) Draw...

    2. (a) Derive the mathematical model for the system shown; no need to simplify. (b) Draw the electrical circuit analogous to this system. 2 2. Circuit with Voltage Source Inductance (L) Capacitance (1/C) Resistance (R) Charge (4) Voltage (v) Current (i) Mechanical System Mass (m) Stiffness (k) Viscous damper (c) Displacement (x) Force () Velocity (ä)

  • For a mass-spring-damper mechanical systems shown below, x200) K1-1 N/m 0000 -X,(0) K-1 N/m 00004 =...

    For a mass-spring-damper mechanical systems shown below, x200) K1-1 N/m 0000 -X,(0) K-1 N/m 00004 = 1 N-s/m fr2 M1=1 kg = 2 N-s/m M2 -1 kg 13 = 1 N-s/m 1. Find the differential equations relating input force f(t) and output displacement xi(t) and x2(C) in the system. (40 marks) (Hint: K, fy and M are spring constant, friction coefficient and mass respectively) 2. Determine the transfer function G(s)= X1(s)/F(s) (20 marks)

  • Problem 5. Consider the dynamics of two mass mechanical system captured by d2xi(t) Middt?t2+k(x1(t)-x2(t)) = f(t)...

    Problem 5. Consider the dynamics of two mass mechanical system captured by d2xi(t) Middt?t2+k(x1(t)-x2(t)) = f(t) d'x2(t) dt2 + k(x2(t)-x where M, , M2, and k are constants. Suppose the input is () and the output is X2 (t), find the transfer function G(s) of the system. Note: Consider all zero initial conditions.

  • For the mechanical system shown below find the input-output equation relating xolt) to the displacement input...

    For the mechanical system shown below find the input-output equation relating xolt) to the displacement input x(t) 1. ド ド Ki Derive the transfer function X,G)/X, (s)of the mechanical system shown below. The displacements x, and xo are measured from their respective equilibrium potions. Is the system a first-order system if so, what is the time constant? 2. k1 bz k2 3. Consider the mechanical system shown below. The system is initially at rest. The displacements x, and x2 are...

  • For the system shown in Fig. 1, solve the following problems. (a) Find the transfer function, G(s...

    For the system shown in Fig. 1, solve the following problems. (a) Find the transfer function, G(s)X2 (s)/F(s) (b) Does the system oscillate with a unit step input (f (t))? Explain the reason (c) Decide if the system(x2 (t)) is stable with a unit step input (f (t))? Explain the reason 1. 320) 8 kg 2 N/m 4N-s/m 2N-s/m Fig. 1 2. There are two suspensions for a car as shown in Fig. 2 (a) Find the equations of each...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT