Question

The spring in the diagram below has a spring const
0 0
Add a comment Improve this question Transcribed image text
Answer #1

T Cos50 50.0° T sin50

Along the horizontal direction , force equation is given as

T Sin50 = F

T Sin50 = kx

T Sin50 = 2000 (0.1)

T = 261.1 N

b)

Along the vertical direction , force equation is given as

T Cos50 = mg

(261.1) Cos50 = m (9.8)

m = 17.12 kg

Add a comment
Know the answer?
Add Answer to:
The spring in the diagram below has a spring constant of k = 2000 N/m, and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring is suspended vertically from a fixed support. The spring has spring constant k=24 N m −1 k=24 N m−1 . An object...

    A spring is suspended vertically from a fixed support. The spring has spring constant k=24 N m −1 k=24 N m−1 . An object of mass m= 1 4 kg m=14 kg is attached to the bottom of the spring. The subject is subject to damping with damping constant β N m −1 s β N m−1 s . Let y(t) y(t) be the displacement in metres at the end of the spring below its equilibrium position, at time t...

  • As shown in the diagram below a block is attached to a spring and a cable....

    As shown in the diagram below a block is attached to a spring and a cable. The block is at rest & is in equilibrium (Fnet = 0). The block has a mass of 90 kg. The tension in the cable is 7,154 N. The spring is stretched 82 cm. Determine the force constant of the spring. Express your answer with the correct mks units.

  • You attach one end of a spring with a force constant k = 693 N/m to...

    You attach one end of a spring with a force constant k = 693 N/m to a wall and the other end to a mass m = 1.62 kg and set the mass-spring system into oscillation on a horizontal frictionless surface as shown in the figure. To put the system into oscillation, you pull the block to a position xi = 6.76 cm from equilibrium and release it. A horizontal spring labeled k is attached on its left end to...

  • A spring is suspended vertically from a fixed support. The spring has spring constant k=24 N m −1 k=24 N m−1 . An object...

    A spring is suspended vertically from a fixed support. The spring has spring constant k=24 N m −1 k=24 N m−1 . An object of mass m= 1 4 kg m=14 kg is attached to the bottom of the spring. The subject is subject to damping with damping constant β N m −1 s β N m−1 s . Let y(t) y(t) be the displacement in metres at the end of the spring below its equilibrium position, at time t...

  • A horizontal spring attached to a wall has a force constant of k = 800 N/m.

    A horizontal spring attached to a wall has a force constant of k = 800 N/m. A block of mass m = 1.80 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi=6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block as it passes through...

  • 6. A 1-kilogram mass (m=1) is attached to a spring whose constant is 13 N/m, (k...

    6. A 1-kilogram mass (m=1) is attached to a spring whose constant is 13 N/m, (k = 13) and whose damping force numerically equals to four times the instantaneous velocity. (a = 4) Determine the equation of motior if the mass is initially released from rest from a point 1 meter above the equilibrium position.

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A horizontal spring with force constant k = 700 N/m is attached to a wall at...

    A horizontal spring with force constant k = 700 N/m is attached to a wall at one end and to a block of mass m = 2.30 kg at the other end that rests on a horizontal surface. The block is released from rest from a position 3.40 cm beyond the spring's equilibrium position. (a) If the surface is frictionless, what is the speed of the block as it passes through the equilibrium position? m/s (b) If the surface is...

  • A horizontal spring attached to a wall has a force constant of k = 900 N/m....

    A horizontal spring attached to a wall has a force constant of k = 900 N/m. A block of mass m = 1.30 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 5.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.20 cm from equilibrium. 1.22J : Your answer is correct. (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT