Question

8. The time independent Schrödinger equation (TISE) in one-dimension where m is the mass of the particle, E ita energy, (z) the potential (a) Consider a particle moving in a constant pote E> Vo, show that the following wave function is a solution of the TISE and determine the relationahip betwoen E an zero inside the well, ie. V(2)a 0foros L, and is infinite ou , ie, V(x)-w (4) Assuming (b) Consider an infinite square well with walls at 1-0 and z = L. The potential is tside the well, i.e. V(a)oo for < 0 and z L. What are he boundary conditions which must be satisfied by physical wave-functions of a particlke in this well? for s (c) By considering boundary conditions determine the allowed values of B and r. (d) Hence show that the allowed energies for a particle in the well are physical wave-functions for a particle in the well. 15) 8mL2 where integer n > 0. Why is the n- 0 case not an allowed energy? a width of 1 Angstrom, what is the difference in energy between the lowest and second lowest energy states of the electron? What wavelength of light would be transmitted or absorbed in a transition between these states? (e) If an electron is in an infinite square well as described in part (b) and the well has 4 CONTINUED PHAS1202/2013
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 m 0 b2 dm2 Barda ad.tous up:o.at aco t ゲ 2 .-68 -3x6625メlo 8x9.20 09.88 A

Add a comment
Know the answer?
Add Answer to:
8. The time independent Schrödinger equation (TISE) in one-dimension where m is the mass of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1 Time-independent Schrödinger equation (TISE) Remember the (one-dimensional) time-independent Schrödinger equation (TISE) for a state (...

    1 Time-independent Schrödinger equation (TISE) Remember the (one-dimensional) time-independent Schrödinger equation (TISE) for a state ( definite energy E: with Now shift the potential energy by a constant: V(x) -> V(x) Vo Show that (a) The allowed energies (El,Ea. . .) are all shifted by Vo (b) The corresponding states (vi (x),P2( r),...) remain the same.

  • Potential energy function, V(x) = (1/2)mw2x2 Assuming the time-independent Schrödinger equation, show that the following wave...

    Potential energy function, V(x) = (1/2)mw2x2 Assuming the time-independent Schrödinger equation, show that the following wave functions are solutions describing the one-dimensional harmonic behaviour of a particle of mass m, where ?2-h/v/mK, and where co and ci are constants. Calculate the energies of the particle when it is in wave-functions ?0(x) and V1 (z) What is the general expression for the allowed energies En, corresponding to wave- functions Un(x), of this one-dimensional quantum oscillator? 6 the states corresponding to the...

  • 1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0,...

    1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0, y a. The tube is infinitely long in the +z-direction. (a) Solve the Schroedinger equation to derive the allowed wave functions for this particle. Do not try to normalize the wave functions, but make sure they correspond to motion in +2-direction. (b) Determine the allowed energies for such a particle. (c) If we were to probe the...

  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

  • 1. Infinite potential quantum well. (1) Starting from the Schrödinger equation, please derive the...

    1. Infinite potential quantum well. (1) Starting from the Schrödinger equation, please derive the quantized energy levels and wave functions for an infinite potential quantum well of width D 2 nm. (2) Photon emission wavelength: Please calculate the emitted photon wavelength if an electron falls from the n-2 state into n-l state inside this infinite potential quantum well. (3) Heisenberg uncertainty principle: For the n-2 state of an electron inside an infinite potential well, prove that the Heisenberg uncertainty relation...

  • Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well...

    Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well potential of depth Vo, V(x) = -{ S-V., –a sx sa 10, else In lecture we explored the even bound state solutions for this potential. In this problem you will explore the odd bound state solutions. Consider an energy E < 0 and define the (real, positive) quantities k and k as 2m E K= 2m(E + V) h2 h2 In lecture we wrote...

  • 1) Consider a particle with mass m confined to a one-dimensional infinite square well of length...

    1) Consider a particle with mass m confined to a one-dimensional infinite square well of length L. a) Using the time-independent Schrödinger equation, write down the wavefunction for the particle inside the well. b) Using the values of the wavefunction at the boundaries of the well, find the allowed values of the wavevector k. c) What are the allowed energy states En for the particle in this well? d) Normalize the wavefunction

  • 2. A particle of mass m in the infinite square well of width a at time...

    2. A particle of mass m in the infinite square well of width a at time 1 - 0 has wave function that is an equal weight mixture of the two lowest n= 1,2 energy stationary states: (x,0) - C[4,(x)+42(x)] (a) Normalize the wave function. Hints: 1. Exploit the orthonormality of W, 2. Recall that if a wave function is normalized at t = 0, it stays normalized. (b) Find '(x, t) and (x,1)1at a later time 1>0. Express Y*...

  • 3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave...

    3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave functions Ψ(z, t) which are periodic functions of z: Ψ(z,t) = Ψ(z + L, t). a) Solve the Time-Independent Schroedinger equation. For each allowed energy, En, you will find two solutions, (s). Why does this not contradict the theorem that we proved in class about the non-degeneracy of the solutions to the TISE in one dimension? b) Start with the initial condition Ψ(z,0) sin2(nz/L)....

  • 4. Consider the time-independent Schrödinger equation for an "atom" in which the attractive force...

    4. Consider the time-independent Schrödinger equation for an "atom" in which the attractive force between the electron and the proton is modeled as a spring. Then V(r)- (1/2)mu22, where m is the mass of the electron and w is the natural frequency of oscillation You're goal is to determine the eigenenergies of the electron and the corresponding wave functions, as outlined below Let's again start with the radial equation associated with the Schrodinge equation 4.37 in Griffiths [where u(r) R(r)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT