Question

w ma A block of mass my=1.7 kg is resting on a frictionless metal table. The mass is connected by a light string passing thro
0 0
Add a comment Improve this question Transcribed image text
Answer #1

id

Acceleration of the system, a = F/(m1+m2)
Here, F = m2g
Therefore, a = m2g/(m1+m2)

Tension in the cable, T = m1a
= m1m2g/(m1+m2)

Add a comment
Know the answer?
Add Answer to:
w ma A block of mass my=1.7 kg is resting on a frictionless metal table. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • F 100 N 15kg 4. A block of mass m, 8.0 kg slides on a frictionless...

    F 100 N 15kg 4. A block of mass m, 8.0 kg slides on a frictionless tabletop. It is connected to a string that passes over a pulley and suspends a mass m2 -12 kg. The system is released from rest. a) Draw a free-body diagram for each mass b) Write Newton's Second Law for each mass. c) Find tension and the acceleration of the masses?

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • Problem 2: (6 pts) ) Two masses are connected by a string as shown in the figure below. Mass mB = 2.00 kg moves up while mA 12.0 kg moves down a frictionless inclined. The pulley is frictionless...

    Problem 2: (6 pts) ) Two masses are connected by a string as shown in the figure below. Mass mB = 2.00 kg moves up while mA 12.0 kg moves down a frictionless inclined. The pulley is frictionless and has a mass M-2.00 kg, and a radius R-0.200 m (1= ½ MR) (a) Draw the free body diagram for the masses and pulley separately. (b) Use Newton's Second Law of Motion to find the resulting acceleration (2pts) (2pts) (2pts) of...

  • Consider the system shown below. Block A (mass 8 kg) is connected to block B (mass 2 kg) by a horizontal string that pas...

    Consider the system shown below. Block A (mass 8 kg) is connected to block B (mass 2 kg) by a horizontal string that passes over a massless, frictionless pulley. a. Draw and label all forces acting on blocks A and B. b. Draw a free–body diagram for each block c. Determine the acceleration of the system d. Determine the tension on the string . A A

  • 2. (2 points) A 7.00-kg aluminum block and a 12.00-kg copper block are connected by a...

    2. (2 points) A 7.00-kg aluminum block and a 12.00-kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a inclined steel block surface (of angle 0 = 37.0° ) as shown in Figure 2. Making use of Table 4.2, a. Choose your coordinate system for aluminum block and copper block. b. Draw free body diagram for both blocks (mi and m2). c. List all forces applied. d. List...

  • The system shown in the figure below consists of a mass M = 3.3-kg block resting...

    The system shown in the figure below consists of a mass M = 3.3-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 1.7-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 3.3 kg _____ m/s2 acceleration...

  • mi 13) A block with mass m = 5.00 kg is placed on an inclined plane...

    mi 13) A block with mass m = 5.00 kg is placed on an inclined plane with slope of a = 30.0° and is connected to a hanging block with mass m2 = 3.00 kg by a cord passing over a small, frictionless pulley as shown in the figure to the right. The coefficient of static friction is 0.333, and the coefficient of kinetic friction is 0.150. What is the magnitude and direction of the friction force on block mı?

  • F 7. Block A has a mass of ma and block B has a mass of...

    F 7. Block A has a mass of ma and block B has a mass of mp. The coefficient of friction (kinetic) between all surfaces in this system is taken to be ľk. Find the magnitude of the force + necessary to drag block B to the left “at constant speed” if blocks A and B are connected by a light, fle cord passing around a fixed, frictionless pulley.

  • A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are...

    A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. These blocks are allowed to move on a fixed block-wedge of angle e 30.0°. The coefficient of kinetic friction is 0.360 for both blocks. Draw free-body diagrams of both blocks and of the pulley. M, R Mig...

  • A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.7 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. How much work is done by the normal force on m1? What is the final speed of the two blocks? What is the tension in the string as the block falls? The work done...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT