Question

8 kg, r = 0.2 m Question 2 300 A 2kg block is attached to the edge of a 8 kg disc with a radius of 0.2m by a string. The ramp

0 0
Add a comment Improve this question Transcribed image text
Answer #1

FBD of purkey to =TOR (FR) As we know = IX Tx0.2 = MR²x2 0.21 = 8x (0.2) 2x2 10.21 -0.162 option

Add a comment
Know the answer?
Add Answer to:
8 kg, r = 0.2 m Question 2 300 A 2kg block is attached to the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please help 8. An object of mass m-2Kg is attached to a horizontal spring of constant...

    Please help 8. An object of mass m-2Kg is attached to a horizontal spring of constant k-30 N/m and can move frictionless along a horizontal table. The other end of the spring is attached to a wall The spring is relaxed and the block is at rest. Then the block is pushed 3 cm to the left and released from rest. Considering positive x direction to the right, and t-0 the time of release, write the position equation as a...

  • A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring...

    A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring constant is k = 600 N/m. The block is pulled to the right until it is a distance of 0.08 m from the unstrained position and released from rest. What is the kinetic energy of the block when it is 0.06 m from the unstrained position?

  • A block of mass m = 0.59 kg is attached to a spring withforce constant...

    A block of mass m = 0.59 kg is attached to a spring with force constant 128 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.)        (a) At that instant, find the force on the block.          N        (b) At that...

  • An 8 kg block and a 2 kg block are attached by a string as shown....

    An 8 kg block and a 2 kg block are attached by a string as shown. A 40 N horizontal tension force pulls on the 8 kg block and the string connecting the blocks remains taut while they slide to the right. The surface below is horizontal and frictionless and the strings have negligible mass. Find the magnitude of the tension force that the 8 kg block pulls on the 2 kg block with (the tension in the connecting string).

  • A string is wound around a disk of mass M = 215 kg and a radius...

    A string is wound around a disk of mass M = 215 kg and a radius of R = 0.310 m. The disk is free to rotate about its center by a frictionless pin. The other end of the string is attached to a mass m = 87.0 kg. The mass is released from rest and travels downward causing the cylinder to rotate. How many revolutions did the disk make 6 seconds after the release of mass m from rest?

  • 1) A block of mass m = 0.52 kg is attached to a spring with force...

    1) A block of mass m = 0.52 kg is attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) (a) At that instant, find the force on the block.   N   (b)...

  • A block of mass m = 1.4 kg is attached to a string that is wrapped...

    A block of mass m = 1.4 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 7.1 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.27 m/s . Part A: Find the moment of inertia of the wheel if the...

  • A block of mass m = 1.07 kg is attached to a spring with force constant...

    A block of mass m = 1.07 kg is attached to a spring with force constant 134.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.15 m to the right. What is the potential energy of the spring/block system 0.28 s after releasing the block?

  • A block of mass m = 1.23 kg is attached to a spring with force constant...

    A block of mass m = 1.23 kg is attached to a spring with force constant 157.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.11 m to the right. What is the potential energy of the spring/block system 0.28 s after releasing the block?

  • A block of mass m = 0.57 kg is attached to a spring with force constant...

    A block of mass m = 0.57 kg is attached to a spring with force constant 144.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.16 m to the right. What is the potential energy of the spring/block system 0.20 s after releasing the block? J

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT