Question

0 2 pts hcorrect Question 5 Two disks of inertia I-200 kg m2 and radial velocities ui=5.0 rad s-1 and ω2-10.0 rad s-1, rotating towards the same direction. They are placed on top of each other. Find the energy that was lost during this process. Your answer in XXXX J 7500.0000

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Anqular momentum before contact - Angular now endum afm (aften contact-Huy, both move with same 2- (loms 12S00J nal VEr - 112***************************************************************************************************
Check the answer and let me know immediately if you find something wrong... I will rectify the mistakes asap if any

Add a comment
Know the answer?
Add Answer to:
0 2 pts hcorrect Question 5 Two disks of inertia I-200 kg m2 and radial velocities...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A cylinder with rotational inertia I1 = 3.2 kg · m2 rotates clockwise about a vertical...

    A cylinder with rotational inertia I1 = 3.2 kg · m2 rotates clockwise about a vertical axis through its center with angular speed ω1 = 5.8 rad/s. A second cylinder with rotational inertia I2 = 1.2 kg · m2 rotates counterclockwise about the same axis with angular speed ω2 = 6.2 rad/s. If the cylinders couple so they have the same rotational axis, what is the angular speed of the combination (in rad/s)? What percentage of the original kinetic energy...

  • In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and...

    In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and is rotating in the counterclockwise direction with an angular velocity of 7.3 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular velocity of 8.9 rad/s falls from above onto disk 1. The two then rotate as one in the clockwise direction with an angular velocity of 1.8 rad/s. Determine the moment of inertia, in kg ·...

  • Question 3 10 pts A horizontal disk with moment of inertia 0.36 kg-m2 is rotating with...

    Question 3 10 pts A horizontal disk with moment of inertia 0.36 kg-m2 is rotating with an angular speed of 6.5 rad/sec. A point mass of 0.52 kg is gently placed on the outer edge of the disk in a manner so that no torque is applied. The mass then rotates with the disk at an angular speed of 4.37 rad/sec. What is the radius of the disk in meters? 0.38 0.28 0.88 0.58

  • In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and...

    In the diagram, Disk 1 has a moment of inertia of 4.20 kg · m2 and is rotating in the counterclockwise direction with an angular speed of 6.90 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular speed of 8.50 rad/s falls from above onto Disk 1. The two then rotate as one in the clockwise direction with an angular speed of 2.80 rad/s. Determine the moment of inertia of Disk 2.

  • A carousel has a radius of  R=3.00m and a moment of inertia of I= 6250 kgâ‹…m2 for...

    A carousel has a radius of  R=3.00m and a moment of inertia of I= 6250 kgâ‹…m2 for rotation about axis perpendicular to the its center. The carousel is rotating unpowered and without friction with an angular velocity of 1.25 rad/s. An 85.0 kg man runs with a velocity of v=8.00m/s , on a line tangent to the rim of the carousel, overtaking it. The man runs onto the carousel and grabs hold of a pole on the rim. (Figure 1) a...

  • 28. II A 4.0-m-diameter playground merry-go-round with a moment of inertia of 400 kg m2, is...

    28. II A 4.0-m-diameter playground merry-go-round with a moment of inertia of 400 kg m2, is freely rotating with an angu- lar velocity of 2.0 rad/s. Ryan, whose mass is 80 kg, runs on the ground around the outer edge of the merry-go-round in the opposite direction to its rotation. Still moving, he jumps directly onto the rim of the merry-go-round, bringing it (and himself) to a halt. How fast was Ryan running when he jumped on? A. 2.0 m/s...

  • Figure shows a disk with moment of inertia J=0.5 kg-m2 that is initially rotating at an...

    Figure shows a disk with moment of inertia J=0.5 kg-m2 that is initially rotating at an angular velocity 0 0 = 40 rad/s. A flexible shaft with torsional spring constant k = 65 N-m/rad connected to the disk. The disk is subjected to friction, which is modeled by linear viscous friction torque bò, with friction coefficient b = 1.0 N-m-s/rad. The input torque in the clockwise direction is a step function Tin(t) = 3.0U(t) N-m. Flexible shaft, k Disk Viscous...

  • A turntable has a radius of 0.80 m and a moment of inertia of 2.0 kg m2. The turntable is rotating with an angular velocity of 1.5 rad/s about a vertical axis though its center on frictionless bearings.

    A turntable has a radius of 0.80 m and a moment of inertia of 2.0 kg m2. The turntable is rotating with an angular velocity of 1.5 rad/s about a vertical axis though its center on frictionless bearings. A very small 0.40-kg ball is projected horizontally toward the turntable axis with a velocity of 3.0 m/s. The ball is caught by a very small and very light cup-shaped mechanism on the rim of the turntable (see figure). a) What is the...

  • 1. A solid cylinder has a mass of 5 kg and a radius of 30 cm. A torque of 40 Nm is applied to the cylinder. What will be...

    1. A solid cylinder has a mass of 5 kg and a radius of 30 cm. A torque of 40 Nm is applied to the cylinder. What will be its angular acceleration? a) 37.5 rad/s2 b) 59.3 rad/s2 c) 89.0 rad/s2 d) 178 rad/s2 2. When an object is in static equilibrium a) the net force on it is zero b) the net torque on it is zero c) the net force and net torque are zero d) not enough...

  • 2. A motor with armature moment of inertia,Ja 0.02 kg-m2, is directly coupled to a m ass Jı = 0.0...

    2. A motor with armature moment of inertia,Ja 0.02 kg-m2, is directly coupled to a m ass Jı = 0.06 kg-m2. The motor is also con nected to a massless gearbox with N1-15 teeth on the input side and N2 75 teeth on the output side. Coupled to the gearbox output shaft is a load, J 1 kg m2. Refer to the figure, below It is desired to rotate the load three revolutions in 0.7 seconds using a trapezoidal velocity...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT