Question

P-hdiagram for water 500 600 C 5.5 20 MPa 0MPa... 7.5 SMPa 2MPa 1 MPa 0.5MP Entropy 0.2MPa 100kPa 50 kPa 20 kPa 10 kPa 5 kPa 2kPa 00 C 0℃ ::40℃ 60% 70% 80% 90% 50% 0 C 10% 20% 30% 40% 1kPaE- ーー500 1000ーー1500一一20toーー7500- plot by 3500 3000 4000 EnthalpykJ/kg
In the above P-h diagram of a Rankine cycle heat engine. The entropy production in the turbine is most nearly:

a) 50%
b) 0 kJ/Kg-K
c) 1 kJ/Kg-K
d) 100%
e) 7.5 kJ/Kg-K
0 0
Add a comment Improve this question Transcribed image text
Answer #1

-Lo 8iven P-hd.ayla..。 ob tion

Add a comment
Know the answer?
Add Answer to:
In the above P-h diagram of a Rankine cycle heat engine. The entropy production in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to th...

    Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to the steam in a furnace maintained at 800 K, and waste heat is rejected to the surroundings at 300 K. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the net work output, (b) the thermal efficiency...

  • P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at...

    P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at 20 MPa, 600°C. Between the high and low-pressure turbines, steam at 1 MPa is extracted and delivered to the closed feedwater heater. Feedwater exits the feedwater heater at 20 MPa and the saturation temperature of the 1-MPa steam; saturated liquid condensate is fed through a steam trap back to the condenser. Steam from the second- stage turbine enters the condenser at 10 kPa, and...

  • 2. In an ideal reheat Rankine cycle, steam enters the first-stage turbine at 20 MPa, 550°...

    2. In an ideal reheat Rankine cycle, steam enters the first-stage turbine at 20 MPa, 550° C. The steam exits the first-stage turbine at 4 MPa and is reheated to 500 9 C at constant pressure. What is the heat input in kJ/kg required for reheating? Answer: 498 kJ/kg

  • 6. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine...

    6. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 120 kg/s. Determine: (a) Draw the ideal Rankine cycle in T-S diagram (b) The net power developed, in kW. (b) The rate of heat transfer to the steam passing through the boiler, in kW. (c) The thermal efficiency. 2 P (kPa) 16000 16000 TC)...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • 1). A simple Rankine cycle uses water as the working fluid. Saturated vapor enters the turbine...

    1). A simple Rankine cycle uses water as the working fluid. Saturated vapor enters the turbine at 8.0 MPa and saturated liquid water exists the condenser at a pressure of 8.0 kPa. The net power output of the cycle is 100MW Determine: a. The thermal efficiency b. The work ratio c. The mass flow rate of the steam in kg/min d. The rates of heat transfer into/from the working fluid as it passes through the boiler and condenser, respectively, in...

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • Very detail right the steps. To solve Problem 3-40 points An ideal Rankine cycle utilizing water...

    Very detail right the steps. To solve Problem 3-40 points An ideal Rankine cycle utilizing water operates under the following conditions: P3 8 MPa. T3 500 C, P4 150 kPa, W net 100 MW For this cycle, determine: (a) sketch a T-s diagram of the cycle showing the saturation lines (b) the work produced by the turbine (kJ/kg) (c) the work required by the pump (kJ/kg) (d) the back work ratio (e) the mass flow rate of water passing through...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT