Question

In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...

In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What would happen to the distance between maxima, if the frequency of the light increases?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

We know that location of maxima Gorman So distance between two maxina Ybxl-%b= (mil-m) a sy = 2 Sayad If frequency T at then

Add a comment
Know the answer?
Add Answer to:
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of...

    In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of 517 nm. An interference pattern is observed on the screen. The distance between the screen and the double-slit is 1.3 m and the distance between the two slits is 0.118 mm. A light wave propogates from each slit to the screen. What is the path length difference between the distance traveled by the waves for the fifth-order maximum (bright fringe) on the...

  • In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a...

    In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of 697 nm. An interference pattern is observed on the screen. The distance between the screen and the double-slit is 1.67 m and the distance between the two slits is 0.104 mm. A light wave propogates from each slit to the screen. What is the path length difference between the distance traveled by the waves for the fifth-order maximum (bright fringe) on the...

  • Consider double slit experiment with two slits are separated by d=0,715 mm

    Consider double slit experiment with two slits are separated by d=0.715 mm and each slit width is 0.00321 mm. Screen is placed L=1.28 m away from the slits. a) Derive an algebraic equation to find linear distance of interference bright fringe on the screen from central bright (central maxima) fringe?  b) Consider interference pattern due to light of unknown wavelength and linear separation between 2 and 5" bright fringes is 3.05 mm. Find the wavelength of the light? c) Now consider double slit...

  • In a double-slit experiment, a viewing screen is located 2.30m from the slits and the distance...

    In a double-slit experiment, a viewing screen is located 2.30m from the slits and the distance between the slits is 0.28mm. A monochromatic light with a wavelength of 4.80 ✕ 102 nm is directed toward the double slit and forms an interference pattern on the screen. Find the distance (Delta y in mm) between the first and second bright fringes of the interference pattern. a. None of the given answers b. 3.94 c. 7.89 d. 11.8 e. 0.25 f. 1.97

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • In a Young's double-slit experiment, 586 -nm-wavelength light is sent through the slits

    In a Young's double-slit experiment, 586 -nm-wavelength light is sent through the slits. A screen is held at a distance of 1.50 m from the slits. The second-order maxima appear at an angle of 2.50° from the central bright fringe. How far apart do the first-order (m=1) and second-order (m=2) maximum appear on the screen?

  • A laser with wavelength d/8 is shining light on a double slit with slit separation 0.500...

    A laser with wavelength d/8 is shining light on a double slit with slit separation 0.500 mm . This results in an interference pattern on a screen a distance L away from the slits. We wish to shine a second laser, with a different wavelength, through the same slits. What is the wavelength λ2 of the second laser that would place its second maximum at the same location as the fourth minimum of the first laser, if d = 0.500...

  • A laser with wavelength d/8 is shining light on a double slit with slit separation 0.350mm...

    A laser with wavelength d/8 is shining light on a double slit with slit separation 0.350mm . This results in an interference pattern on a screen a distance L away from the slits. We wish to shine a second laser, with a different wavelength, through the same slits. Part A What is the wavelength ?2 of the second laser that would place its second maximum at the same location as the fourth minimum of the first laser, if d =...

  • Question 3: Calibrating the Double Slit You are attempting to perform a double slit experiment (see...

    Question 3: Calibrating the Double Slit You are attempting to perform a double slit experiment (see Figure 2): the distance between slits is 0.1 mm, the distance from the barrier to the screen is L = 2 m, and the distance from the coherent) laser light source to the barrier is t = 0.4 m. You are using red light, with a wavelength = 660 nm. You are worried that you have not perfectly centred the laser halfway between the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT