Question

1 13 mm 1 1.25 m 75 mm -25m 1. 12-2.5 m The minimum bending moment is M225 kNm. Choose the best location m away from A where
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1.25m 14.5KM 2KNIm l.5m 2.5m Free: Body Diagram 2kNIm 4.5KN 8 RA RB 45 2x1-5 7.5 KN zb RAX2S-4.sx C2.s-1.252 + 2x1.SX0-7S=0

Add a comment
Know the answer?
Add Answer to:
1 13 mm 1 1.25 m 75 mm -25m 1. 12-2.5 m The minimum bending moment...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 10 mm 10 mm 300 N/m 50 mm 10 mm Problem 2. Consider the beam above with the cross-section shown. ...

    please solve 1-5 and show all steps and equations used 10 mm 10 mm 300 N/m 50 mm 10 mm Problem 2. Consider the beam above with the cross-section shown. The number (300N/m) indicates the value of the load distribution at its peak. (5 pts.) Find the reactions (15 pts.) Draw the shear and moment diagrams using the graphical method. Ensure you state values of the diagrams, and type of function for lincar or higher-order segments. You can indicate all...

  • 3-34 For each section illustrated, find the second moment of area, the location of the neutral...

    3-34 For each section illustrated, find the second moment of area, the location of the neutral axis, and the distances from the neutral axis to the top and bottom surfaces. Consider that the section is transmitting a positive bending moment about the z axis, M., where M. = 10 kipin if the dimen- sions of the section are given in ips units, or M. = 1.13 kNm if the dimensions are in SI units. Determine the resulting stresses at the...

  • Use the graphical method to construct the shear-force and bending-moment diagrams for the beam shown. Label...

    Use the graphical method to construct the shear-force and bending-moment diagrams for the beam shown. Label all significant points on each diagram and identify the maximum moments along with their respective locations. Additionally: (a) Determine V and M in the beam at a point located 1.50 m to the right of B. (b) Determine Vand M in the beam at a point located 1.25 m to the left of D. Leta - 3.0m, b = 6.1 m,w = 38 kN/m,...

  • If the beam is subjected to a positive bending moment of M = 100 kN-m, determine...

    If the beam is subjected to a positive bending moment of M = 100 kN-m, determine the maximum and minimum bending stress. Also determine the shear stress at point, A which is 50 mm above from the bottom. The cross-section of the beam is I-shaped and shown in the figure. 300 mm 30 mm 300 mm . 50 mm 30 mm

  • If the beam is subjected to a positive bending moment of M = 100 kN-m, determine...

    If the beam is subjected to a positive bending moment of M = 100 kN-m, determine the maximum and minimum bending stress. Also determine the shear stress at point, A which is 50 mm above from the bottom. The cross-section of the beam is I-shaped and shown in the figure. 300 mm 30 mm 300 mm . 50 mm 30 mm

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using "Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (I) for regions "AB", "BC" and "CD"; however it is equal to (21) for the region “DE”. (“B” is the roller and “E” is the fixed type of support). [The flexural rigidity: EI=40000 kNm] 60 KN 10 kN/m B (21) 1.5 m 1...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (1) for regions "AB", "BC" and "CD"; however it is equal to (21) for the region “DE”. (“B” is the roller and "E" is the fixed type of support). [The flexural rigidity: EI=40000 kNm-] 60 KN 10 kN/m I. B (21) X 1.5...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using "Force Method". The (roller) support at "B" settles 35 mm. The moment of inertia is given by (1) for regions "AB", "BC" and "CD": however it is equal to (21) for the region "DE". ("B" is the roller and "E" is the fixed type of support). [The flexural rigidity: EI-40000 kNm] 60 KN 10 kN/m B L (21) 1.5 X...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method". The (roller) support at "B" settles 35 mm. The moment of inertia is given by (1) for regions "AB", "BC" and "CD"; however it is equal to (21) for the region "DE". ("B" is the roller and "E" is the fixed type of support). [The flexural rigidity: El-40000 kNm"] 60 KN 10 kN/m B (1) (1) D (21)...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (I) for regions “AB”, “BC” and “CD”; however it is equal to (21) for the region “DE”. (“B” is the roller and “E” is the fixed type of support). [The flexural rigidity: EI=40000 kNm’] 60 KN 10 kN/m A B X (I) (I)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT