Question

Flying Circus of Physics Brake or turn? The figure depicts an overhead view of a cars path as the car travels toward a wall.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a] Work done by friction force = change in KE

-Friction*d = 0-0.5mv0^2

friction*111 = 0.5*1430*35^2

friction = 0.5*1430*35^2/111 = 7891 N

b] maximum possible static friction fs,max = us mg = 0.540*1430*9.8 = 7567.56 N

c] acceleration a= -uk*g = -0.4*9.8 = -3.92 m/s^2

by third equation of motion, v = sqrt(u^2+2as) = sqrt(35^2+2*-3.92*111) = 18.835 m/s answer

d] friction force = mv0^2/d = 1430*35^2/111 = 15781 N

Add a comment
Know the answer?
Add Answer to:
Flying Circus of Physics Brake or turn? The figure depicts an overhead view of a car's...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Brake or turn? Figure 6-45 depicts an overhead view of a car's path as the car...

    Brake or turn? Figure 6-45 depicts an overhead view of a car's path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is d = 109 m, and take the car's mass as m = 1430 kg, its initial speed as v0 = 37.0 m/s, and the coefficient of static friction as μs = 0.530. Assume that the car's weight is distributed evenly on the four wheels,...

  • Flying Circus of Physics In the figure, a climber leans out against a vertical ice wall...

    Flying Circus of Physics In the figure, a climber leans out against a vertical ice wall that has negligible friction. Distance a is 0.915 m and distance L is 2.25 m. His center of mass is distance d = 0.85 m from the feet-ground contact point. If he is on the verge of sliding, what is the coefficient of static friction between feet and ground? com- Us = Number Units

  • An automobile traveling at speed v on a level surface approaches a brick wall. When the...

    An automobile traveling at speed v on a level surface approaches a brick wall. When the automobile is at a distance d from the wall, the driver suddenly realizes that he must either brake or turn. If the coefficient of static friction between the tires and the surface is µ, what is the minimum distance that the driver needs to stop (without turning)? What is the minimum distance that the driver needs to complete a 90◦ turn (without braking)? What...

  • A car of mass M = 800 kg traveling at 55.0 km/hour enters a banked turn...

    A car of mass M = 800 kg traveling at 55.0 km/hour enters a banked turn covered with ice. The road is banked at an angle ?, and there is no friction between the road and the car's tires as shown in(Figure 1) . Use g = 9.80 m/s2 throughout this problem. Now, suppose that the curve is level (?=0) and that the ice has melted, so that there is a coefficient of static friction ? between the road and...

  • A car of mass M = 1300 kg traveling at 65.0 km/hour enters a banked turn...

    A car of mass M = 1300 kg traveling at 65.0 km/hour enters a banked turn covered with ice. The road is banked at an angle θ, and there is no friction between the road and the car's tires as shown in (Figure 1) . Use g = 9.80 m/s2 throughout this problem. r= 91.43 m. Now, suppose that the curve is level (θ=0) and that the ice has melted, so that there is a coefficient of static friction μ...

  • A 960-kg race car can drive around an unbanked turn at a maximum speed of 45...

    A 960-kg race car can drive around an unbanked turn at a maximum speed of 45 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 13000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A 810-kg race car can drive around an unbanked turn at a maximum speed of 40...

    A 810-kg race car can drive around an unbanked turn at a maximum speed of 40 m/s without slipping. The turn has a radius of 120 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 9200 N on the car. What is the coefficient of static friction between the track and the car's tires? What would be the maximum speed if no downforce acted on the car?

  • A 860-kg race car can drive around an unbanked turn at a maximum speed of 44...

    A 860-kg race car can drive around an unbanked turn at a maximum speed of 44 m/s without slipping. The turn has a radius of 140 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A 900-kg race car can drive around an unbanked turn at a maximum speed of 42...

    A 900-kg race car can drive around an unbanked turn at a maximum speed of 42 m/s without slipping. The turn has a radius of 170 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 10000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • The driver of a car of mass M which is moving along a straight road with...

    The driver of a car of mass M which is moving along a straight road with initial speed v0 sees a deer in her headlights, and reacts quickly, lifting her foot of the gas and applying the brake pedal with maximum force. The anti-lock brakes cause the largest possible static friction force to be applied on the tires by the road, which continue to roll so the car does not skid. The coefficient of static friction between the tires and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT