Question

2. a. Prove that f(x) = V22 - 13 is uniformly continuous on the interval (7,0). b. Prove or disprove: f(x) = V x2 - 13 is not
0 0
Add a comment Improve this question Transcribed image text
Answer #1

\\*\text{A function }f(x)\text{ is said to be uniformly continuous on a set }X\text{ if}\\*\text{for every }\epsilon>0,\quad\exists\delta>0\text{ such that} \\*\forall x,y\in X,\quad|x-y|<\delta\implies |f(x)-f(y)|<\epsilon

.

.

(a) PROOF:

\\*\text{Let }\epsilon>0. \\*\\*\text{Now, }\forall x,y\in [7,\infty), \\*|f(x)-f(y)| \\*\\*=|\sqrt{x^2-13}-\sqrt{y^2-13}| \\*\\*< |\sqrt{x^2}-\sqrt{y^2}|\quad\quad[\because x^2-13<x^2,\quad y^2-13<y^2] \\*\\*= |x-y|\quad\quad[x\in[7,\infty)\implies x>0\implies \sqrt{x^2}=x] \\*\\*\\*\therefore |f(x)-f(y)|<|x-y|\quad\forall x,y\in [7,\infty) \\*\\*\implies |f(x)-f(y)|<|x-y|< \epsilon\text{ whenever }|x-y|< \epsilon \\*\\*\text{Let }\delta=\epsilon. \\*\\*\boxed{\text{Hence, }\forall x,y\in [7,\infty),\quad |x-y|< \delta =\epsilon\implies |f(x)-f(y)|< \epsilon} \\*\\*\text{Thus, }f(x)\text{ is uniformly continuous on the interval }[7,\infty). \\*\text{Hence proved.}

.

.

(b) We DISPROVE the statement as follows:

\\*\text{Let }\epsilon>0. \\*\\*\text{Now, }\forall x,y\in (\sqrt{13},7], \\*|f(x)-f(y)| \\*\\*=|\sqrt{x^2-13}-\sqrt{y^2-13}| \\*\\*< |\sqrt{x^2}-\sqrt{y^2}|\quad\quad[\because x^2-13<x^2,\quad y^2-13<y^2] \\*\\*= |x-y|\quad\quad[x\in(\sqrt{13},7]\implies x>0\implies \sqrt{x^2}=x] \\*\\*\\*\therefore |f(x)-f(y)|<|x-y|\quad\forall x,y\in(\sqrt{13},7] \\*\\*\implies |f(x)-f(y)|<|x-y|< \epsilon\text{ whenever }|x-y|< \epsilon \\*\\*\text{Let }\delta=\epsilon. \\*\\*\boxed{\text{Hence, }\forall x,y\in (\sqrt{13},7],\quad |x-y|< \delta =\epsilon\implies |f(x)-f(y)|< \epsilon} \\*\\*\text{Thus, }f(x)\text{ is uniformly continuous on the interval }(\sqrt{13},7]. \\*\text{Hence the statement that f(x) is not uniformly continuous on } (\sqrt{13},7]\text{ is disproved.}

.

.

(c) We PROVE the statement as follows:

\\*\text{Let }\epsilon>0. \\*\\*\text{Now, }\forall x,y\in [a,\infty), \\*|f(x)-f(y)| \\*\\*=|\sqrt{x^2-13}-\sqrt{y^2-13}| \\*\\*< |\sqrt{x^2}-\sqrt{y^2}|\quad\quad[\because x^2-13<x^2,\quad y^2-13<y^2] \\*\\*= |x-y|\quad\quad[x\in[a,\infty)\implies x>0\implies \sqrt{x^2}=x] \\*\\*\\*\therefore |f(x)-f(y)|<|x-y|\quad\forall x,y\in [a,\infty) \\*\\*\implies |f(x)-f(y)|<|x-y|< \epsilon\text{ whenever }|x-y|< \epsilon \\*\\*\text{Let }\delta=\epsilon. \\*\\*\boxed{\text{Hence, }\forall x,y\in [a,\infty),\quad |x-y|< \delta =\epsilon\implies |f(x)-f(y)|< \epsilon} \\*\\*\text{Thus, }f(x)\text{ is uniformly continuous on the interval }[a,\infty). \\*\text{Hence proved.}​​​​​​​​​​​​​​

Add a comment
Know the answer?
Add Answer to:
2. a. Prove that f(x) = V22 - 13 is uniformly continuous on the interval (7,0)....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT