Question

A conducting rod is pulled horizontally with constant force F= 3.90 N along a set of rails separated by d= 0.220 m. A uniform magnetic field B= 0.800 T is directed, into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 3.80 m/s Using Faradays Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive direction for emf. 6.69×10-1 v You are correct. Previous Tries The emf around the loop causes a current to flow. How large is that current? (Again, use a positive value for clockwise direction.) 1.07m Remember F=ma: since v is constant, a=0, so it must be true that the net force on the rod is zero. The pulling force is compensating the force on the rod due to the current through it and the magnetic field. Submit Answer Incompatible units. No conversion found between m and the required units. Tries 7/20 Previous Tries t must be the electrical resistance of the loop? (The resistance of the rails is negligible From your previous results compared to the resistancé of the rod, so the resistance of the loop is constant 0.01364 ohms Use Ohms Law Submit Answer Incorrect. Tries 3/20 Previous Tries e rate, at which the external force does mechanical work must be equal to the rate at which energy is dissipated in the circuit at is that rate of energy dissipation (power dissipate You can either calculate the mechanical power generated by the external force, or the electrical power dissipation in the circuit. Do it both ways to check your answer Submit Answer Incorrect. Tries 1/20 Previous Tries

0 0
Add a comment Improve this question Transcribed image text
Answer #1

induced emf = B L v

= (0.800) (0.220) (3.80)

= 0.669 Volt

field is into the page and flux is increasing.

hence induced current will be counterclockwise

ANs: - 0.669 V  


----------------------------


F = IL x B

3.90 = (I x 0.220) (0.800)

I = - 22.2 A ....Ans


---------------------------------


R = V / I

= 0.669 / 22.2

R = 0.03 ohm .....Ans


--------------------

P = F v = 3.90 x 3.80 = 14.82 Watt .....Ans


-----------------


P = I^2 R =22.2^2 x 0.03 = 14.8 Watt ...Ans

Add a comment
Know the answer?
Add Answer to:
A conducting rod is pulled horizontally with constant force F= 3.90 N along a set of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A conducting rod is pulled horizontally with constant force F=3.20 N along a set of rails...

    A conducting rod is pulled horizontally with constant force F=3.20 N along a set of rails separated by d-0.240 m. A uniform magnetic field B= 0.600 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 4.50 m Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive direction for...

  • A conducting rod is pulled horizontally with constant force F-4.40 N along a set of rails...

    A conducting rod is pulled horizontally with constant force F-4.40 N along a set of rails separated by d= 0.340 m. A uniform magnetic field B=0.500 T is directed into the page. There is no friction between the rod and the rails, and therod moves with constant velocity v= 3.60 m/s Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive direction for emf...

  • A conducting rod is pulled horizontally with constant force F= 4.80 N along a set of...

    A conducting rod is pulled horizontally with constant force F= 4.80 N along a set of rails separated by d= 0.620 m. A uniform magnetic field B= 0.500 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 6.60 m/s. A.) Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the...

  • A conducting rod is pulled horizontally with constant force F= 4.60 N along a set of...

    A conducting rod is pulled horizontally with constant force F= 4.60 N along a set of rails separated by d= 0.420 m. A uniform magnetic field B= 0.700 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 6,50 m/s. X X X X X X X X X X x x x x x x X X x x x x Using Faraday's Law, calculate...

  • Could someone explain to me the correct answers and the concept behind the positive is clockwise...

    Could someone explain to me the correct answers and the concept behind the positive is clockwise and how these answers are negative? A conducting rod is pulled horizontally with constant force F= 3.20 N along a set of rails separated by d= 0.480 m. A uniform magnetic field B= 0.800 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v- 4.70 m/s Using Faraday's Law, calculate...

  • A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B...

    A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B pointing out of the page as shown. The bar is moving at a speed v as indicated to the right. The rails have negligible electrical resistance compared to the crossbar, and you may neglect friction in the sliding of the crossbar. (a) What is the direction of the induced current flowing in the crossbar? Explain your reasoning. (b) Systematically develop an expression for the...

  • Review The figure(Figure 1) shows a zero resistance rod sliding to the right on two zero-resistance...

    Review The figure(Figure 1) shows a zero resistance rod sliding to the right on two zero-resistance rails separated by the distance L = 0.515 m. The rails are connected by a 13.522 resistor, and the entire system is in a uniform magnetic field with a magnitude of 0.822 T Part A Find the force that must be exerted on the rod to maintain a constant current of 0.149 A in the resistor Figure 1 of 1 19 | A20 ?...

  • The conducting rod shown in the figure has length L and is being pulled along horizontal, frictio...

    The conducting rod shown in the figure has length L and is being pulled along horizontal, frictionless, conducting rails at a constant velocity. The rails are connected at one end with a metal strip. A uniform magnetic field, directed out of the page, fills the region in which the rod moves. Assume that L 8.3 cm, the speed of the rod is v = 4.4 m/s, and the magnitude of the magnetic field is B = 1.0 T. (a) what...

  • 3. Electromagnetic Inductance. Consider a single loop under magnetic field. (a) If the area A =...

    3. Electromagnetic Inductance. Consider a single loop under magnetic field. (a) If the area A = 0.012[m) is constant, but the magnetic field is increasing at the rate of 0.020 T/s), determine the induced emf. (Use Faraday's law; the induced emf in a loop equals the absolute value of the time rate of change of the magnetic flux through the loop.) (b) If the total resistance of the circuit is 5.0(82), find the induced current. (c) Suppose we change the...

  • need help with this part A conducting rod with a weight of 2.00 N and a...

    need help with this part A conducting rod with a weight of 2.00 N and a length of 3.00 m can slide with no friction down a pair of vertical conducting rails, as shown in the figure below. The rails are joined at the bottom by a lightbulb of resistance 3.00 ohms. The rails have stops near the bottom to prevent the rod from smashing the bulb. There is a uniform magnetic field of magnitude 5.00 T directed out of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT