Question

1. Calculate the concentration of a solution prepared by adding 15.00 mL of 1.98 x 10-3M KMnO, from a buret into a 50.00 mL vCalculate the concentration of a solution prepared by adding 15.00 mL of 1.98 × 10 − 3 M K M n O 4 from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here is the solution of your question. If you have any doubt or need any clarification please comment in comment box and will definitely resolve your query. If you find useful please upvote it. Thanks in advance.

from May, = M2Yz M, = 1.988103M Vi = is.oml Vz=50ml 1.98x163x15 mi= M2 *some - M2=5.94x104m cs Scanned with CamScanner

Add a comment
Know the answer?
Add Answer to:
Calculate the concentration of a solution prepared by adding 15.00 mL of 1.98 × 10 −...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 1.97 x 10-MKMnO4...

    1. Calculate the concentration of a solution prepared by adding 15.00 mL of 1.97 x 10-MKMnO4 from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint. This is a dilution calculation M Your answer is incorrect - Check your calculations. 2. A linear standard curve of KMnO4 is prepared from a set of standard solutions by plotting absorbance (y) vs. concentration (x). Use Google Sheets/Excel to plot...

  • 1. If a solution absorbed yellow light, what color would the solution appear to be? Hint:...

    1. If a solution absorbed yellow light, what color would the solution appear to be? Hint: indigo 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 2.05 x 10-'MKMnO, from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 ml graduation mark with distilled water. Hint: 2. A linear standard curve of KMnO, is prepared from a set of standard solutions by plotting absorbance (y) vs. concentration (x). Use Google...

  • I. If a solution absorbed yellow light, what color would the solution appear to be? Hint:...

    I. If a solution absorbed yellow light, what color would the solution appear to be? Hint: 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 2.09 x 10-3 M KMnO, from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint: *M Your answer is incorrect - Check your calculations. 2. A linear standard curve of KMnO4 is prepared from a set of standard...

  • I. If a solution absorbed violet light, what color would the solution appear to be? Hint:...

    I. If a solution absorbed violet light, what color would the solution appear to be? Hint: 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 1.92 x 10-3 M KMnO, from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint: 2. A linear standard curve of KMnO4 is prepared from a set of standard solutions by plotting absorbance (y) vs. concentration (x). Use...

  • 1. If a solution absorbed blue-green light, what color would the solution appear to be? Hint:...

    1. If a solution absorbed blue-green light, what color would the solution appear to be? Hint: Table I, at the beginning of the experiment, will help you answer this one. 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 2.09 ~ 10-3M KMnO4 from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 ml graduation mark with distilled water. Hint: M 2. A linear standard curve of KMnO4 is prepared...

  • 3. Suppose that an unknown sample is analyzed spectrophotometrically at the same wavelength that was used...

    3. Suppose that an unknown sample is analyzed spectrophotometrically at the same wavelength that was used for the standard curve and the absorbance was found to be 0.196. Use the standard curve to find the concentration of the unknown. 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 1.98 x 10-3 M KMnO, from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint:...

  • I. If a solution absorbed yellow light, what color would the solution appear to be? Hint:...

    I. If a solution absorbed yellow light, what color would the solution appear to be? Hint: Indigo 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 2.09 x 10-3 MKMnO4 from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint: 0.000627 M 2. A linear standard curve of KMnO4 is prepared from a set of standard solutions by plotting absorbance (y) vs. concentration...

  • If a solution absorbed violet light, what color would the solution appear to be? Hint: Table...

    If a solution absorbed violet light, what color would the solution appear to be? Hint: Table I, at the beginning of the experiment, will help you answer this one.    Calculate the concentration of a solution prepared by adding 15.00 mL of 1.96×10−31.96×10-3 M KMnO4KMnO4 from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint: This is a dilution calculation. M A linear standard curve of KMnO4KMnO4...

  • I. If a solution absorbed orange light, what color would the solution appear to be? Hint:...

    I. If a solution absorbed orange light, what color would the solution appear to be? Hint: 1. Calculate the concentration of a solution prepared by adding 15.00 mL of 1.96 x 10-'MKMnO from a buret into a 50.00 mL volumetric flask, which is then filled to the 50.00 mL graduation mark with distilled water. Hint: M 2. A linear standard curve of KMnO4 is prepared from a set of standard solutions by plotting absorbance (y) vs. concentration (x). Use Logger...

  • What would the concentration of nitrate be (in M) in a solution prepared by adding 30.0...

    What would the concentration of nitrate be (in M) in a solution prepared by adding 30.0 mL of 0.050 M potassium nitrate with 40.0 mL of a 0.075 M sodium nitrate solution into a volumetric flask that is 250 mL and then filling it up to the 250 mL mark with water and mixing it well?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT