Question

2. A linear system S has the relationship y[n] = į f[k]g[n – 2k] k=-- between its input f[n] and its output y[n], where g[n]

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
2. A linear system S has the relationship y[n] = į f[k]g[n – 2k] k=-- between...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 2.7. A linear system S has the relationship between its input x[n] and its output y[n],...

    2.7. A linear system S has the relationship between its input x[n] and its output y[n], where g[n] - uln] uln - 4].

  • Question 1 Given a causal LTI system y[k] 0.5yk 1]f[k], with f[k] as input and y[k]...

    Question 1 Given a causal LTI system y[k] 0.5yk 1]f[k], with f[k] as input and y[k] as the output. (1) Find the transfer function H(z) and specify its ROC (2) Assume that f[k] -(H u[k] is the input to the LTI system. Use the Z transform's time- convolution property and the inverse Z transform to find the output y[k

  • Name: 10. [8 points] Consider a discrete-time LTI system with input x[n] and out- put y[n]....

    Name: 10. [8 points] Consider a discrete-time LTI system with input x[n] and out- put y[n]. When the input signal x[n] = (6)" is applied to the system, the output signal is y[n] = 0 for all n When the input signal xn] (3)" u[n] is applied to the system, the output signal is y[n] = A 8[n] + 2 (5)" u[n] for all n, where A is a constant number a) Find A. b) Find the impulse response of...

  • 3. Consider the Linear Time-Invariant (LTI) system decribed by the following differential equation: dy +504 +...

    3. Consider the Linear Time-Invariant (LTI) system decribed by the following differential equation: dy +504 + 4y = u(t) dt dt where y(t) is the output of the system and u(t) is the input. This is an Initial Value Problem (IVP) with initial conditions y(0) = 0, y = 0. Also by setting u(t) = (t) an input 8(t) is given to the system, where 8(t) is the unit impulse function. a. Write a function F(s) for a function f(t)...

  • PROBLEM 7.3*: The diagram in Fig. 2 depicts a cascade connection of two linear time-invariant (LTI)...

    PROBLEM 7.3*: The diagram in Fig. 2 depicts a cascade connection of two linear time-invariant (LTI) systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system. [n] yi[n] y[n] LTI System #1 hin] LTI System #2 h2[1] Figure 2: Cascade connection of two LTI systems. (a) Suppose that System #1 is a "blurring" filter described by the following equation y1 [n] =arn-k] k=0 and...

  • 2. (a) For each sample of a discrete time signal x[n] as input, a system S...

    2. (a) For each sample of a discrete time signal x[n] as input, a system S outputs the value y[n- . Determine whether the system S is i. linear ii. time-invariant 1ll. causal iv. stable Each of your answers should be supported by justification. In other words, show your reasoning (b) Consider a stable linear time-invariant (LTI) system with transfer function H(z). It is required to design a LTI compensator system G(z) that is in cascade with H(z) such that...

  • Mouzey bighalsledsystems tionne 907 octet Acone s ona 27/0 y the 13. The input-output relationship of an LTI system...

    Mouzey bighalsledsystems tionne 907 octet Acone s ona 27/0 y the 13. The input-output relationship of an LTI system is deseribed by the difference squation: n]+0.5y[n-1]-xn], Try to figure out two possible unit impulse responses for such a system. Then state which unit impulse response comresponding to tomer les modules com a stable system. 2, b) x,(2)=z" +62 452 | > 1 14) Find the inverse z-transform of the following signals a) X(E)(-2 XI-2) :-5 c) X2(E)-0.5:)1-0.5 )0. <2 15....

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • Problem 2: (40 pts) Part A: (20pts) A third-order system has an of Y(s)-L[y(t) corresponding to...

    Problem 2: (40 pts) Part A: (20pts) A third-order system has an of Y(s)-L[y(t) corresponding to a unit step input u(t) is known to be input of u(t) and an output of y(t). The forced response portion 1 Ys) (3 +3s2+ 4s +5) = a) Determine the input-output differential equation for the system b) From your result in a), determine the transformed free response Yee (s) corresponding to initial conditions of: y(0)= y(0) = 0 and ý(0)-6 Part B (20pts)...

  • A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine...

    A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine the frequency response H(e^jω) for the system. Determine a difference equation relating any input x(n) and the corresponding output y(n). Question 3:[4 Marks] A causal and stable LTI system has the property that: 4 4 a) Determine the frequency response H(e/ø) for the system. b) Determine a difference equation relating any input x(n) and the corresponding output y(n)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT