Question
Please Help!!!!!
m2 14. A system of two blocks (m is 8.0 kg and m is S.0 kg) and a pulley is released from rest in the configuration shown above Ch is 4.0 m). What is the speed of the more massive block (in m/s) when it strikes the ground? 2R/3 15. A small ice cube with mass 100 g is placed at the top of a bowl with radius 15 cm as shown above (position A). Assuming the bottom of the bowl is h-o ma, what is the gravitational potential energy of the ice cube (in J) in position A? 16. In the previous problem, after the ice cube is released, it slides down the bowl. What is the speed of the ice cube (in m/s) as it passes through position B?
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Please Help!!!!! m2 14. A system of two blocks (m is 8.0 kg and m is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 1 Consider the following system of two blocks connected by a massless rope. The surface that...

    1 Consider the following system of two blocks connected by a massless rope. The surface that block 2 slides on is frictionless. The pulley is massless and frictionless and the two blocks above are released from rest at the points shown M=8,00 kg 35.00 1 = 12.000 kg 3.200 m Use conservation of energy to find the speed of object 1 when it strikes the ground. Clearly indicate your zeros for the gravitational potential energy of each object on the...

  • Problem 31 mi ma Two blocks ma = 4 kg and m2 = 9 kg are...

    Problem 31 mi ma Two blocks ma = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder e with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction uk = 0.15. The incline is at the angle...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction x = 0.15. The incline is at the angle =...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle o...

  • Problem #1 mi m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 mi m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle 0...

  • Two blocks with different masses m1 and m2 and m1 is larger than m2. They are...

    Two blocks with different masses m1 and m2 and m1 is larger than m2. They are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The mass are released from rest, and the more massive one starts to descend. After this block has descended 1.6 m, its speed is 2.2 ms-1. If the total mass is 4.1 kg, what is the mass of the heavier block m1 (unit is kg)?...

  • Two blocks with equal mass m = 2.1 kg are connected by a string that passes...

    Two blocks with equal mass m = 2.1 kg are connected by a string that passes over a pulley wheel. Block A sits on a level table, with friction acting between the block and ramp surfaces with coefficient of kinetic friction µk = 0.27. Block B is suspended below the pulley wheel, initially at a height h = 1.23 m above the ground. The system is released from rest. What is the final speed of both blocks in units of...

  • Two blocks of masses m1 and m2 are connected by a light cord that passes over...

    Two blocks of masses m1 and m2 are connected by a light cord that passes over a pulley of mass M, as shown. Block m2 slides on a frictionless horizontal surface. The blocks and pulley are initially at rest. When m1 is released, the blocks accelerate and the pulley rotates. The total angular momentum of the system of the two blocks and the pulley relative to the axis of rotation of the pulley isthe same at all times.proportional to I1,...

  • In the figure, two blocks, of masses 2.00 kg and 3.00 kg, are connected by a...

    In the figure, two blocks, of masses 2.00 kg and 3.00 kg, are connected by a light string that passes over a frictionless pulley of moment of inertia 0,00400 kg m^2 and radius 5.00 cm. The of friction for the tabletop is 0.300. The blocks are released from rest. a) What is the acceleration of the system b) Find the speed of the blocks just as the system has moved 0.600 m.

  • Two blocks are connected by a massless rope that passes over a pulley. The pulley is...

    Two blocks are connected by a massless rope that passes over a pulley. The pulley is 12 cm in diameter and has a mass of 2.0 kg. As the pulley turns, friction at the axle exerts a torque of magnitude 0.50 Nm. If the blocks are released from rest, how long does it take the 4.0-kg block to reach the floor? 4.0 kg 1.0 m Answer: 2.0 kg t = 1.1 s

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT