Question

A mass weighing 8 lb stretches a spring 3 in. The mass is attached to a viscous damper with a damping constant of 2 lb-s/it.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

& ft/sec 6 Ceuren - wo 8 lb L 3 in = 3/10 ft = 1 ft 7= 2lb-sift g= 32 ft 152 ulo) - gin/s I ft/sec is mu + rutky = 0 ) ) wit

Add a comment
Know the answer?
Add Answer to:
A mass weighing 8 lb stretches a spring 3 in. The mass is attached to a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a...

    A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a viscous damper with damping constant 3 lb-s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 6 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a...

    A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a viscous damper with damping constant 3 lb ·s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached...

    < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached to a viscous damper with damping constant 4lb-s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 5 in/s. Determine the position u of the mass at any time t. Use 32 ft/s” as the acceleration due to gravity. Pay close attention to the units. u(t) = in

  • A mass weighing 16 lb stretches a spring 3 in. the mass is attached to a viscous damper with a da...

    A mass weighing 16 lb stretches a spring 3 in. the mass is attached to a viscous damper with a damping constant of 2 lb s/ft. if the mass is set in motion from its equilibrium position with a downward velocity of 3 in/s. (1) find its position u(t) at any time t. Plot u versus t. (2) Determine the quasi frequency and the quasi period. (3) find the time τ such that |u(t)| < 0.01 in for all t...

  • An object weighing 16 lb streches a spring 3 in. The object is attached to a...

    An object weighing 16 lb streches a spring 3 in. The object is attached to a viscous damper with a damping constant of 2 lb-s/ft. If the object is set in motion from its equilibrium position by pulling it downward an additional 1 inch, find the position of the object at any time t.

  • A mass weighing 9 lb stretches a spring 8 in. The mass is pulled down an...

    A mass weighing 9 lb stretches a spring 8 in. The mass is pulled down an additional 7 in and is then set in motion with an initial upward velocity of 2 ft/s. No damping is applied. a. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) = 5 cos (4 3 t) + sin(4V3 t) 2V3 b. Determine the period, amplitude...

  • 3. < Previous Ne A mass weighing 9 lb stretches a spring 4 in. The mass...

    3. < Previous Ne A mass weighing 9 lb stretches a spring 4 in. The mass is pulled down an additional 3 in and is then set in motion with an initial upward velocity of 6 ft/s. No damping is applied. a. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) = ft b. Determine the period, amplitude and phase of the...

  • (a) A mass weighing w pounds stretches a spring spring as shown in the figure below foot and stre...

    (a) A mass weighing w pounds stretches a spring spring as shown in the figure below foot and stretches a different spring foot. The two springs are attached in series and the mass is then attached to the double rigid support Assume that the motion is free and that there is no damping force present. Determine the equation of motion if the mass is initially released at a point 1 foot below the equilibrium position with a downward veloity of's...

  • 4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a...

    4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a positive displacement of 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and that the mass is acted on by an external force of 2 cost 3t lb, formulate and solve the initial value problem describing the motion of the mass. (20 pts)

  • (1 point) A mass weighing 8 lb stretches a spring 3 in. Suppose the mass is...

    (1 point) A mass weighing 8 lb stretches a spring 3 in. Suppose the mass is displaced an additional 11 in in the positive (downward) direction and then released with an initial upward velocity of 2 ft/s. The mass is in a medium, that exerts a viscuouse resistance of 1 lb when the mass has a velocity of 4 ft/s. Assume g 32 ft/s is the gravitational acceleration (a) Find the mass m (in lb.s/ft) (b) Find the damping coefficient...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT