Question

Assume that you have a nozzle, with air entering at 300 kPa and 67 C with...

Assume that you have a nozzle, with air entering at 300 kPa and 67 C with a velocity of 60 m/s. The air exits the nozzle at 90 kPa and 330m/s. Do NOT make an adiabatic assumption. Instead, assume that the heat losses from the nozzle to the surroundings are 3.2 kJ/kg. The surroundings are at 20 C. Assume that air is an ideal gas with variable specific heats

.a) Find the exit temperature.

b) Find the entropy change for the air (kJ/kg K)

c) Find the total entropy change(kJ/kg K). (Consider both the air in the nozzle and the surroundings.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

02 P = sookpad T-67°c P2 = go (kPa) V2 = $50 (18) = 340K V = 60lm 18) 2 By Applying 21-22 assumed to an SFEE between Of ® e hI sa-si = -0.16817014 + 0.3u55uolg * 52-51 (pen (1) - Ren (1) fligg) & S2-51 0.287x en/287 611gy! 1.005 -0.287 x 90 300 340 0

Add a comment
Know the answer?
Add Answer to:
Assume that you have a nozzle, with air entering at 300 kPa and 67 C with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a...

    Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a velocity of 100 m/s. It exits the nozzle at a pressure of 100 kPa. Assuming that the expansion through the nozzle occurs reversibly, determine (a) the exit temperature and (b) the exit velocity of the air. The specific heats of air can be assumed to be constant with Cv = 0.742 kJ/kg oC and Cp = 1.029 kJ/kg oC.

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • Argon enters an insulated nozzle at 280 kPa, 1300 K, 10 m/s and exits at 645...

    Argon enters an insulated nozzle at 280 kPa, 1300 K, 10 m/s and exits at 645 m/s. Assume argon is an ideal gas and has a constant specific heat. Determine a) The exit temperature of the argon under the actual process (K). b) The ideal exit temperature of the argon (K) under the isentropic process if the isentropic efficiency of the nozzle is 90 percent. c) The exit pressure of the argon (kPa). d) The amount of specific entropy generation...

  • Air enters a nozzle in a jet engine at a pressure of 500 kPa, temperature of...

    Air enters a nozzle in a jet engine at a pressure of 500 kPa, temperature of 650K, and velocity of 75 m/s. The air exits the nozzle at a pressure of 100 kPa, and the isentropic nozzle efficiency is 82%. a). Determine the velocity of the air at the nozzle exit. b). Determine the rate of entropy generation in the nozzle per kg of air flowing in kW/kgK

  • Air enters a well-insulated nozzle at 400 m/s, 7 kPa, and 417°C and exits at 700...

    Air enters a well-insulated nozzle at 400 m/s, 7 kPa, and 417°C and exits at 700 m/s. The nozzle inlet diameter is 0.2 m. Assuming ideal gas behavior, calculate a) the mass flow rate of the air. Then, determine the exit temperature of the air two ways: b) using the air table (A-17, which automatically accounts for the variation of specific heat with temperature); and c) assuming constant specific heats at the inlet temperature of 417°C. i he comatn speche...

  • fluids qusion 3) Air enters an isentropic nozzle at 360 kPa, 8 m/sec and 540 K....

    fluids qusion 3) Air enters an isentropic nozzle at 360 kPa, 8 m/sec and 540 K. The nozzle exit pressure is 90 kPa. Calculate the temperature and velocity of the airflow at the nozzle exit using a) Exact analysis (variable specific heats) b) Approximate analysis (constant specific heats; assume that specific heat ratio (k) for air is 141

  • Air enters an adiabatic nozzle under the following conditions: pressure = 900 kPa temperature = 560°C...

    Air enters an adiabatic nozzle under the following conditions: pressure = 900 kPa temperature = 560°C velocity = 2.7 m/s The air leaves the nozzle at 850 kPa and 480 °C. What is the velocity at the exit of the nozzle? Assume the specific heat is constant and can be taken at the average temperature between the inlet and outlet. air (c) EYES Niel Crews, 2013

  • Thermo one Question 5 A steam turbine generates energy in the form of work at the rate of 346.1...

    Thermo one Question 5 A steam turbine generates energy in the form of work at the rate of 346.1 kJ/kg of steam. The steam at the inlet of the turbine is at 8 MPa, 480oC, and at a velocity of 163.5 m/s. The steam exits the turbine at 2 MPa, 240oC, and a velocity of 55.3 m/s. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 333.5oC. Determine the rate of entropy production (kJ/kg-K) within...

  • 2. Air enters an adiabatic nozzle with a pressure, temperature, and velocity of 900 kPa 500°C, an...

    2. Air enters an adiabatic nozzle with a pressure, temperature, and velocity of 900 kPa 500°C, and 2.8 m/s, respectively. The air leaves the nozzle at 850 kPa and 480°C. What is the velocity at the exit of the nozzle? Ans 208.949 m/s 2. Air enters an adiabatic nozzle with a pressure, temperature, and velocity of 900 kPa 500°C, and 2.8 m/s, respectively. The air leaves the nozzle at 850 kPa and 480°C. What is the velocity at the exit...

  • Question 6 Air at the inlet of an ideal (reversible-adiabatic) compressor is at 100 kPa and...

    Question 6 Air at the inlet of an ideal (reversible-adiabatic) compressor is at 100 kPa and 2685o. The compressor exit pressure is at 620.4 kPa. Determine the compressor power (kw Calculate the power based on variable specific heats (i.e.,use the ideal gas table for air). Selected Answer Incorrect [None Given] Rgl_e 尻(T) W, m(m-h.) Correct Answer: Correct -47.41% Question 7 Nitrogen gas expands in an adiabatic nozzle from 800 kPa 600x, to a final pressure of 98.26 kPa. Calculate the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT