Question

3. (4 pts) Living organisms use energy from the metabolism of food to create an energy-rich molecule called adenosine triphosphate (ATP). The ATP then acts as an energy source for a variety of reactions that in living organisms must carry out to survive. ATP provides energy through its hydrolysis, which can be symbolized as follows: ATP(aq) + H2O(l) → ADP(aq) + Pin(aq) &Gorun =-30.5 kJ where ADP represents adenosine diphosphate and Pm represents an inorganic phosphate group (e.g., HPO,). In a particular cell, the concentrations of ATP, ADP, and Pin are 0.0031 M, 0.0014 M, and 0.0048 M, respectively. Calculate the free energy change for the hydrolysis of ATP under these conditions. (Assume a temperature of 298 K)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
3. (4 pts) Living organisms use energy from the metabolism of food to create an energy-rich...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Living organisms use energy from the metabolism of food to create an energy rich molecule called...

    Living organisms use energy from the metabolism of food to create an energy rich molecule called adenosine triphoshpate (ATP). the ATP then acrs as and energy source for a variegty of reactions that the living organism must carry oyut to survive. ATP provides energy through its hydrolysis, which can be symbolized as follows: ATP(aq)+H2O(l) --> ADP(aq)+Pi(aq) with a delta G of the reaction being =-30.5 kj. Where ADP represents adenosine diphosphate and Pi represents in inorganic phosphate group (such as...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq)+ H,O)ADP(aq) + HPO (aq) for which AGxn =-30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AGn in a biological cell in which 5.0 mM. 5.0 mM, [ADP) 0.10 mM, and [HPO [ATP) -36.4 kJ/mol AGn= Is the hydrolysis of ATP spontaneous...

  • A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H,00) ADP(aq) + HPO- (aq) for which AGix = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG in in a biological cell in which (ATP) = 5.0 mm. (ADP) = 0.70 mM, and [HPO") = 5.0 mm. AG KJ/mol...

  • A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H,O(1) ADP(aq) + HPO (aq) in a biological cell in which for which AG x = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG [ATP] = 5.0 mm, (ADP) = 0.10 mM, and [HPO) = 5.0 mM. AGrx =...

  • A critical reaction in the production of energy to do work drive chemical reactions biological systems...

    A critical reaction in the production of energy to do work drive chemical reactions biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by ATP(aq) + H_2O(l) rightarrow ADP(aq) + HPO^2-_4 (aq) for which delta G degree _rxn = --30.5 kJ/mol at 37.0 degree C and pH 7.0, Calculate the value of degree G_rxn in a biological cell in which [ATP] = 5.0 mM, [ADP] = 0.90 mM, and [HPO^2-_4] = 5.0 mM. Delta...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological system the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate. ADP, as described by ATP(aq) + H_2O(I) rightarrow ADP(aq) + HPO^2-4 (aq) for which Delta G degree_DM = - 30.5 kJ/mol at 37.0 degree C and pH 7.0. Calculate the value of Delta G_DM in a biological cell in which [ATP] = 5.0 mM, [ADP] = 0.80 mM, and (HPO_4^2-) = 5.0 mM....

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to diphosphate, ADP, as described by ATP(aq) + H_2O(l) rightarrow ADP(aq) + HPO^2-_4(aq) for which delta G degree _ = -30.5 kJ/mol at 37.0 degree C and pH 7.0. Calculate the value of delta G_ in a biological cell in which (ATP) = 5.0 mM, [ADP] = 0.60 mM, and (HPO^2-_4] = 5.0 mM. Is...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H2O(1) ADP(aq) + HPO- (aq) - for which AG x = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG in a biological cell in which (ATP) = 5.0 mm, (ADP) = 0.90 mm, and [HPO-) = 5.0 mM. AG...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H,O(1) ADP(aq) + HPO- (aq) for which AG = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG xn in a biological cell in which [ATP] = 5.0 mm, (ADP) = 0.10 mM, and (HPO 1 - 5.0 mM. AG...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT