Question

Image for Figure 1: A pendulum of length L swinging under the force of gravity. . Suppose the pendulum is dropped from a

0 0
Add a comment Improve this question Transcribed image text
Answer #1

According to given situation

When we release it at an angle \theta_{o} with the verticle then at this position it will experience torque about the point of suspension due to which it starts oscillations about the hinge point. Here the torque is due to force "mg" or the weight of the pendulum bob.

b) here the model is very close to real conditions as if we ignore the frictional conditions due to air and all other resistances then it would be very close to realistic conditions

Add a comment
Know the answer?
Add Answer to:
Figure 1: A pendulum of length L swinging under the force of gravity. . Suppose the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pendulum swinging in a circular arc under the influence of gravity, as shown in the...

    A pendulum swinging in a circular arc under the influence of gravity, as shown in the figure, has both centripetal and tangential components of acceleration. length of pendulum is 0.75 m a) If the pendulum bob has a speed of 2.7 m/s when the cord makes an angle of θ = 17 with the vertical, what are the magnitudes of the components at this time? Express your answers using two significant figures separated by a comma. b) Where is the...

  • (1 point) Suppose a pendulum of length L meters makes an angle of θ radians with the vertical, as n the figure t can be...

    (1 point) Suppose a pendulum of length L meters makes an angle of θ radians with the vertical, as n the figure t can be shown that as a function of time, θ satisfies the differential equation d20 + sin θ-0, 9.8 m/s2 is the acceleration due to gravity For θ near zero we can use the linear approximation sine where g to get a linear di erential equa on d20 9 0 dt2 L Use the linear differential equation...

  • (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as...

    (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0) ~ 0, and with that substitution, the differential equation becomes linear A. Determine the equation of motion of a...

  • (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It...

    (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It can be shown that e as a function of time satisfies the differential equation: de 8 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin(0) - 0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum...

  • show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0...

    show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 +sin0 0 dt2 where g 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0)~0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum with length...

  • 1. The angular displacement e(t) of an undamped pendulum of length l swinging in a vertical...

    1. The angular displacement e(t) of an undamped pendulum of length l swinging in a vertical plane under the influence of gravity can be modelled with the nonlinear second order ODE 0"(t) + "$(0(e) – Pef) = = 0, (1) where w2 = { (a) Re-write equation (1) as a system of first-order ODEs by defining (1 = 0(t) and 02 = 't). (b) Find the nullclines and equilibrium points for the system of first-order ODEs. (c) The first order...

  • A grandfather clock contains a pendulum that swings back and forth due to gravity. Model the...

    A grandfather clock contains a pendulum that swings back and forth due to gravity. Model the pendulum as a one-dimensional rod that is connected to a solid disk. The length of the rod is L, and the radius of the solid disk is R. The mass of each object is  . Known:  , L, R, g What is the angular acceleration of the swinging pendulum when it is at an angle relative to the vertical, as shown? Let counterclockwise be the positive...

  • A pendulum consists of a string of length L and a mass m hung at one...

    A pendulum consists of a string of length L and a mass m hung at one end and the mass oscillates along a circular arc. Part a) Familiarize yourself with the derivation of omega = Squareroot g/L to hold. i) Explain succinctly how the angular frequency of oscillation omega = Squareroot g/L comes about from Newton's Law, where g is the gravitational acceleration. ii) One assumption required is the small angle approximation: sin theta = theta and cos theta =...

  • Previous Problem List Next 11 point) Suppose a pendulum with length Limeters) has angle iradians) from...

    Previous Problem List Next 11 point) Suppose a pendulum with length Limeters) has angle iradians) from the vertical. It can be shown that as a function of time satisfies the differential equation: do sin = 0 de? Z . and with that substitution, the differential where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin(0) - equation becomes Inear A. Determine the equation of motion of a pendulum with...

  • A child swinging on a swingset with chains of length l wants to swing and jump...

    A child swinging on a swingset with chains of length l wants to swing and jump off the swing to get as far as possible. The child isn't being pushed. At what angle θ should the child let go of the swing to maximize the landing distance and what is the distance jumped as a function of θ? Hints: Model swinging using simple pendulum and jumping using projectile motion. Find equations for speed and height as functions of the swing...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT