Question

The following figure is the isothermal transformation diagram for a precursor of 0.76 wt% austenite (eutectoid steel) 800 1400 Eutectoid temperature 700 1200 600 1000 500 800 O400 600 300 M(start) M( 50%) M(90%) 50% 400 200 | | 100 10 10 10 10 Time (s) 10-1 10a. b.c.d.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
a. b.c.d. The following figure is the isothermal transformation diagram for a precursor of 0.76 wt%...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Make a copy of the isothermal transformation diagram for an iron–carbon alloy of eutectoid composition provided...

    Make a copy of the isothermal transformation diagram for an iron–carbon alloy of eutectoid composition provided overleaf and then sketch and label time–temperature paths on this diagram to produce the following microstructures: a) 25% martensite and 75% austenite b) 100% fine pearlite c) 25% pearlite, 25% bainite, 45% martensite, and 5% austenite. d) 100% tempered martensite. 800 A 1400 Eutectoid temperature 700 A 1200 A P 600 1000 500 800 AXTIS 400 A 600 300 M(start 50% 200 400 M+A...

  • 900 1600 A A+C 404 • Chapter 10 Phase Transformations Figure 10.39 Isothermal transformation diagram for...

    900 1600 A A+C 404 • Chapter 10 Phase Transformations Figure 10.39 Isothermal transformation diagram for a 1.13 wt% Ciron-carbon alloy: A, austenite; B, bainite; C, proeutectoid ce 800 mentite; M, martensite; P.pearlite. [Adapted from H. Boyer (Editor), Atlas of Isother- mal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.) ? 1400 200 A+P 1200 600 1000 500 A+B Temperature (°C) 800 Temperature (°F) 400 A 300 600 50% 200 M(start) 400 M(50%)...

  • Please show all work! Thanks! Isothermal transformation diagram is given below.   13.8-1 Using the isothermal transformation...

    Please show all work! Thanks! Isothermal transformation diagram is given below.   13.8-1 Using the isothermal transformation diagram for a carbon steel of eutectoid composition (obtained from the In specify the final microstructure (in terms of microstructure pres tituent present) for small sa ent and approximate percentages of each phase or con. uent present) for small samples allowed to equilibrate at 760°C (1400 F) following each of the cooling a. Cool rapidly to 700°C (1290°F), hold for 10 seconds, then quench...

  • 1. Using the isothermal transformation diagram for an iron-carbon alloy of eutectoid composition, specify the nature...

    1. Using the isothermal transformation diagram for an iron-carbon alloy of eutectoid composition, specify the nature of the final microstructure (in terms of microconstituents present and approximate percentages of each) of a small specimen that has been subjected to the following time-temperature treatments. In each case assume that the specimen begins at 760°C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure (a) Rapidly cool to 400°C, hold for...

  • Using the isothermal transformation diagram for an alloy steel (type 4340) specify the nature of the final microstruct...

    Using the isothermal transformation diagram for an alloy steel (type 4340) specify the nature of the final microstructure (in terms of micro-constituents present and approximate percentages) of a small specimen that has been subjected to the following time-temperature treatments: In each case assume that the specimen begins at 760°C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenite structure. (a) (a) Rapidly cool to 400°C, hold for 10 seconds, and...

  • 5. Using the attached ITT diagram for 1.13 wt% C steel, name the structures present and...

    5. Using the attached ITT diagram for 1.13 wt% C steel, name the structures present and approximate quantities after the following heat treatments: a) heat to 900°C, quench to 700°C, hold for 10 s, quench to 0°C (the iron-iron carbide phase diagram will help) b) heat to 900°C, quench to 300°C, hold for 1000 s, quench to 0°C c) heat to 900°C, quench to 100°C d) heat to 800°C, quench to 0°C (the iron-iron carbide phase diagram will help) 404...

  • Round to the nearest 5%--no need for something like 43.2...that would become 45. If there's none of that phase form...

    Round to the nearest 5%--no need for something like 43.2...that would become 45. If there's none of that phase formed, enter a 0 (zero). If it looks close enough then it is 800 1400 Eutectoid temperature 700 1200 1000 500 800 400 600 300 M(start) 200 400 M + A M( 5096) M19096) 100 10 102 03 104105 Time (s) Using the above TTT diagram for the eutectoid composition of steel, enter the relative amount of each microstructure formed for...

  • Describe the heat treatment scheume that would provide the following property changes to 1080 steel. Refer...

    Describe the heat treatment scheume that would provide the following property changes to 1080 steel. Refer to TTT diagram below. a) 100% pearlite to a miture of 50% pearlite and 50% martensite b) Mixture of 75% pearlite and 25% martensite to 100% martensite 800 1400 Eutectoid temperature 700 1200 600 1000 500 800 400 600 300 M(start) M(50%) M(90%) 50% 400 200 M + A 100 200 0 10-1 102 Time (s) 10 103 10 10

  • Problem 4 The TTT (isothermal transformation) diagram for an iron-carbon alloy with eutectoid 0.78 wt. %...

    Problem 4 The TTT (isothermal transformation) diagram for an iron-carbon alloy with eutectoid 0.78 wt. % C composition is shown on the next page. Describe the microstructure present in a thin strip of 1080 steel (0.80 wt. % C, approximately eutectoid composition) after each step of the following treatments. Assume that the steel is initially 100 % in the austenite phase due to prior homoge- nization by holding at 871 °C for 1 h. (a) Quench in lead at 704...

  • Using the attached TTT diagram for 1.13 wt% C steel, name the structures present and approximate...

    Using the attached TTT diagram for 1.13 wt% C steel, name the structures present and approximate quantities after the following heat treatments: a) heat to 900°C, quench to 700°C, hold for 10 s, quench to 0°C (the iron-iron carbide phase diagram will help) b) heat to 900°C, quench to 300°C, hold for 1000 s, quench to 0°C c) heat to 900°C, quench to 100°C d) heat to 800°C, quench to 0°C (the iron-iron carbide phase diagram will help) 900 1600...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT