Question

10. In the figure below, a box slides down an incline. As the box moves from point A to point B, which are 5.0 m apart, an ap
0 0
Add a comment Improve this question Transcribed image text
Answer #1

(d) Solution Given: distance between R and B 2 5.0m Applied force (F) = 2.00 frictional force (f) = 100 KE B/W and B² = 35] l

Add a comment
Know the answer?
Add Answer to:
10. In the figure below, a box slides down an incline. As the box moves from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • block starts from rest at the top of a 30.0° incline and slides 2.00 m down...

    block starts from rest at the top of a 30.0° incline and slides 2.00 m down the incline in 1.75s. a) Find the acceleration of the block b) Find the speed of the block after it has slid 2.00 m c) Find the frictional force acting on the block d) Find the normal contact force e) Find the coefficient of kinetic friction

  • Q3- A 3kg box slides down 1m long incline as in the figure. The box starts...

    Q3- A 3kg box slides down 1m long incline as in the figure. The box starts from rest at the top, experiences a constant frictional force of 5N. Use energy method to determine the speed at the bottom of the incline? d1.00 m 0.500 m Q4- The coefficient of kinetic friction between 3kg block and the surface in the figure is 0.4. The system starts from rest. Use energy principle to find the speed of the 5kg ball when it...

  • A 44 kg block of ice slides down a frictionless incline 1.5 m long and 0.82...

    A 44 kg block of ice slides down a frictionless incline 1.5 m long and 0.82 m high. A worker pushes up against the ice, parallel to the incline, so that the block slides down at constant speed. (a) Find the magnitude of the worker's force. N How much work is done on the block by the following forces? (Include the sign of the value in your answer.) (b) the worker's force J (c) the gravitational force on the block...

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • ​A 3.70-kg block starts from rest at the top of a 30.09 incline and slides a distance of 1.90 m down the incline in 1.20 s.

    A 3.70-kg block starts from rest at the top of a 30.09 incline and slides a distance of 1.90 m down the incline in 1.20 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.90 m.

  • A 6 kg block slides down a ramp which is at an incline of 15°. If...

    A 6 kg block slides down a ramp which is at an incline of 15°. If the frictional force is 5.40 N, what is the coefficient of friction? Assume g = 10 m/s2 At what incline (measured in degrees) will the box slide at a constant velocity?

  • As a 2.0 kg box slides down a very rough incline, it lose 16.0 J of...

    As a 2.0 kg box slides down a very rough incline, it lose 16.0 J of kinetic energy and 10.0 J of gravitational potential energy before it comes to rest on the incline. How much work did friction do on the box? a. 6.0 J b. -6.0 J c. 26.0 J d. -26.0 J

  • A 3.00kg block starts from rest at the top of a 30.0 degree incline and slides...

    A 3.00kg block starts from rest at the top of a 30.0 degree incline and slides a distance of 2.00m down the incline in 1.50s. Find (a)the magnitude of the acceleration of the block, (b) the coefficient of kinetic friction between block and plane, (c) the friction force acting on the block and (d) the speed of the block after it has slid 2.00m.

  • 3.00-kg block starts from rest at the top of a 36.0° incline and slides 2.00 m...

    3.00-kg block starts from rest at the top of a 36.0° incline and slides 2.00 m down the incline in 1.30 s. (a) Find the frictional force acting on the block.

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT