Question

Problem 4: Given the transfer function, 25pts 25 H(s) S2+6s 25 (a) (b) (c) Fi Find Please put the units. Find the poles of the system. Is this system overdamped, underdamped, the settling time, peak time, percent overshoot, and rise time. undamped or critically damped. Explain. nd the state space representation in phase variable form of the above transfer function H(s)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

H(s) --25 3465+25 Settling time: Te -taken by -the depene to reah5e gon5 lo ts4 5X6 10 percentage ονε r shoot -a. ㅈ 6 jo Mp:

Add a comment
Know the answer?
Add Answer to:
Problem 4: Given the transfer function, 25pts 25 H(s) S2+6s 25 (a) (b) (c) Fi Find...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Determine: 1. The transfer function C(s)/R(s). Also find the closed-loop poles of the system. 2. The...

    Determine: 1. The transfer function C(s)/R(s). Also find the closed-loop poles of the system. 2. The values of the undamped natural frequency ωN and damping ratio ξ of the closed-loop poles. 3. The expressions of the rise time, the peak time, the maximum overshoot, and the 2% settling time due to a unit-step reference signal. For the open-loop process with negative feedback R(S) Gp(S) C(s) H(s) 103 Go(s) = 1 , Gp(s)- s(s + 4) Determine: 1. The transfer function...

  • Answer the following questions: К R(s) C(s) к, ST1 Find the closed loop transfer function from...

    Answer the following questions: К R(s) C(s) к, ST1 Find the closed loop transfer function from R(s) to C(s) for the system of the diagram above. Draw the root locus for the system in the diagram above as a function of K Draw the unit step response for the system in the diagram above marking the settling time, peak time and maximum output. Find all the possibilities: overdamped, critically damped, underdamped. Find an expression to the steady state error to...

  • A system with a closed-loop transfer function of the form: T(S) = 10(s + 7) (s...

    A system with a closed-loop transfer function of the form: T(S) = 10(s + 7) (s + 10)(s + 20) has a(n) ......... .... response. critically damped overdamped undamped underdamped

  • a) True or false b) c) If a second order system has a settling time of...

    a) True or false b) c) If a second order system has a settling time of 7 seconds, and a peak time of 3 seconds we may say that the system is stable. A system with a closed-loop transfer function of the form: 10(s + 7) T(S) (s + 10)(s + 20) has a(n) response. la réponse correcte n'est pas répertoriée | the correct answer is not listed critiquement amortie critically damped O non amortie | undamped sous-amortie | inderdamped...

  • 2. then design the LF components Ri. R2,and C to produce and plot with Matlab the following step ...

    2. then design the LF components Ri. R2,and C to produce and plot with Matlab the following step responses by the PLL a. overdamped, b. underdamped, c. critically damped; 3. calculate the phase step response's following parameters: a. b. c. d. rise time T peak time Tp (if applicable) percent overshoot %OS(if applicable) settling time T, c) calculate the steady state phase error lim0e(t) for both PLL types, and draw conclusions whether your PLL can track the: i. incoming signal's...

  • Do only parts C and D 1. A second-order system has the following transfer function that...

    Do only parts C and D 1. A second-order system has the following transfer function that describes its response: F(s)- s2 +as + 9 A. For a -3, calculate the following performance specifications of the system: Natural frequency (on) Damping ratio( Estimated rise time and settling time with ±5% change (tr, ts) Estimated overshoot (MP) . B. Label (a) ±5% range of steady state, (b) tr, (c) ts, and (d) MP on the step response curve below (You may also...

  • 1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the...

    1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the closed loop transfer function TF(s) γ(s) R(s) What are the poles and zeros of TF1(s)? [2 marks] b) For TF(s), calculate the DC gain, natural frequency and damping ratio. Classify TF1(s) as underdamped overdamped, critically damped or undamped [3 marks] c) Use the initial value theorem and final value theorem to determine the initial value (Mo) and final value (M) of the [2 marks]...

  • 1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation...

    1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation i. Using any simulation software package, plot the poles on the s-plane. ii. Using unit step input, plot the transient response when there is no additional third pole to the system. iii. Using unit step input, plot the transient response when there is an additional third pole occur at -200, -20, -10, and -2. Plot them in a single graph. Normalize all the plots...

  • Exercise 3 (15pts) A control system is given by the second order transfer function bellow: Natural frequency of oscillations Damped ratio Determine the range of values of K that render the system...

    Exercise 3 (15pts) A control system is given by the second order transfer function bellow: Natural frequency of oscillations Damped ratio Determine the range of values of K that render the system underdamped Pick one of those values of K (of your choice) and determine 1. 2. 3. 4. a. Percentage overshoot b. Settling time c. Peak time Exercise 3 (15pts) A control system is given by the second order transfer function bellow: Natural frequency of oscillations Damped ratio Determine...

  • 2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the...

    2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the pole-zero plot of the transfer function. b) Show all possible ROC's associated with this transfer function. c) Obtain the impulse response h(t) associated with each ROC of the transfer function. d) Which one (if any) of the impulse responses of part c) is stable? 2. The transfer function of a CT LTI system is given by H(s) (s2...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT