Question
please show all work, include sketch, explanation. thank you!
era un elence (o) at P, In radians, between these two waves: You might consider that the phase difference (what you want) is
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Anence 0 given her wave length dietance between width of slete a = 580nm slits d = o.45 mm a= 25 um no of bright fringes mod=TO) 2 10.99773 x 10.873139 (2.08) In Ilo) = 0.115 19) 2015) ALL AMi am able to answering only first question as per Chegg guidelines....

Please upvote if u have any doubt feel free to ask me...

Add a comment
Know the answer?
Add Answer to:
please show all work, include sketch, explanation. thank you! era un elence (o) at P, In...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider double slit experiment with two slits are separated by d=0,715 mm

    Consider double slit experiment with two slits are separated by d=0.715 mm and each slit width is 0.00321 mm. Screen is placed L=1.28 m away from the slits. a) Derive an algebraic equation to find linear distance of interference bright fringe on the screen from central bright (central maxima) fringe?  b) Consider interference pattern due to light of unknown wavelength and linear separation between 2 and 5" bright fringes is 3.05 mm. Find the wavelength of the light? c) Now consider double slit...

  • P (a) How many bright fringes appear between the first diffrac-P tion-envelope minima to either side...

    P (a) How many bright fringes appear between the first diffrac-P tion-envelope minima to either side of the central maximum in a double-slit pattern ifA 550 nm, d 0.150 mm, and a - 30.0 pm? (b) What is the ratio of the intensity of the third bright fringe to the intensity of the central fringe? ssm

  • 4) Consider orange light of wavelength 620 nm incident on a double slit. The interference pattern...

    4) Consider orange light of wavelength 620 nm incident on a double slit. The interference pattern is observed on a screen that is placed 2.50 m behind the slits. Nine bright fringes are seen, spanning a total distance of 45.0 mm. a) What is the fringe spacing between two adjacent fringes? (Be careful, you may want to sketch out a simple picture of the fringes to assist you with this problem!) b) What is the spacing between the two slits?

  • (6) With the aid of an appropriate diagram, show that for Young's double slit experiment, y...

    (6) With the aid of an appropriate diagram, show that for Young's double slit experiment, y = 2. D/a, where 2 is the wavelength of the source, a is the slit separation, D is the distance between the slits and the screen, and y is the separation between the central bright fringe and the first order fringe. (c) In Young's double slit experiment, the slit spacing was 0.56 mm and the distance across the four-fringe spacing was 3.6 mm when...

  • In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a...

    In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of 697 nm. An interference pattern is observed on the screen. The distance between the screen and the double-slit is 1.67 m and the distance between the two slits is 0.104 mm. A light wave propogates from each slit to the screen. What is the path length difference between the distance traveled by the waves for the fifth-order maximum (bright fringe) on the...

  • In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of...

    In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of 517 nm. An interference pattern is observed on the screen. The distance between the screen and the double-slit is 1.3 m and the distance between the two slits is 0.118 mm. A light wave propogates from each slit to the screen. What is the path length difference between the distance traveled by the waves for the fifth-order maximum (bright fringe) on the...

  • A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How...

    A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How far apart are the bright interference fringes on a screen 5 m away from the double slits? cm 2. (-/10 Points) DETAILS SERCP7 24.P.002. MY NOTES PRACTICE ANOTHER In a Young's double-slit experiment, a set of parallel sits with a separation of 0.050 mm is illuminated by light having a wavelength of 593 nm and the interference pattern observed on a screen 3.50 m...

  • need help with these physics problems

    1a. Two narrow slits are illuminated by a laser with a wavelength of 544 nm. The interference pattern on a screen located x = 4.70 m away shows that the fourth-order bright fringe is located y = 6.20 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits.1b. The screen is now moved 1.1...

  • D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the...

    PLEASE ANSWER 3 AND 5 SHOW ALL ALGEBRA STEPS D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the second order fringe at 0.15 angle. The interference pattern from the slits is projected onto a screen that is 3.00 m away (a) What is the wavelength of the light used (in nm)? (b) What is the separation distance (in mm) on the screen of the second bright fringe from the central bright fringe? (c)...

  • How far is the second dark fringe to the right of the central bright fringe in...

    How far is the second dark fringe to the right of the central bright fringe in the double-slit interference pattern seen on a screen 5 m from the slits? The slits are separated by 0.2 mm and are illuminated by monochromatic light of wavelength 627 nm.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT