Question

need help with these physics problems

1a. Two narrow slits are illuminated by a laser with a wavelength of 544 nm. The interference pattern on a screen located x = 4.70 m away shows that the fourth-order bright fringe is located y = 6.20 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits.


1b. The screen is now moved 1.1 m further away. What is the new distance between the central and the fourth-order bright fringe? 



2. In Young's double slit experiment, 405 nm light gives a fourth-order bright fringe at a certain location on a flat screen. What is the longest wavelength of visible light that would produce a dark fringe at the same location? Assume that the range of visible wavelengths extends from 380 to 750 nm.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

13 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
need help with these physics problems
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Two narrow slits are illuminated by a laser with a wavelength of 542 nm. The interference pattern...

    Two narrow slits are illuminated by a laser with a wavelength of 542 nm. The interference pattern on a screen located x=5.10 m away shows that the fourth-order bright fringe is located y = 6.10 cm away from the central bright fringe. Calculate the distance between the two slits.The screen is now moved 2.4 m further away. What is the new distance between the central and the fourth-order bright fringe? 

  • Two narrow slits are illuminated by a laser with a wavelength of 517 nm. The interference...

    Two narrow slits are illuminated by a laser with a wavelength of 517 nm. The interference pattern on a screen located x = 5.50 m away shows that the fourth-order bright fringe is located y = 9.40 cm away from the central bright fringe. Calculate the distance between the two slits. The screen is now moved 1.7 m further away. What is the new distance between the central and the fourth-order bright fringe?

  • A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How...

    A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How far apart are the bright interference fringes on a screen 5 m away from the double slits? cm 2. (-/10 Points) DETAILS SERCP7 24.P.002. MY NOTES PRACTICE ANOTHER In a Young's double-slit experiment, a set of parallel sits with a separation of 0.050 mm is illuminated by light having a wavelength of 593 nm and the interference pattern observed on a screen 3.50 m...

  • In a Young's double-slit experiment, a set of parallel slits with a separation of 0.132 mm...

    In a Young's double-slit experiment, a set of parallel slits with a separation of 0.132 mm is illuminated by light having a wavelength of 566 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a fourth order bright fringe on the screen? μm (b) What is the difference in path lengths from the two slits to the location of...

  • Two narrow slits are illuminated by a laser with a wavelength of 541 nm. The interference...

    Two narrow slits are illuminated by a laser with a wavelength of 541 nm. The interference pattern on a screen located x = 4.60 m away shows that the third-order bright fringe is located y = 8.60 cm away from the central bright fringe. Calculate the distance between the two slits. a.) 8.68×10-3 cm The screen is now moved 2.3 m further away. What is the new distance between the central and the third-order bright fringe? b.) ????

  • In a Young's double slit experiment a screen is placed 85.0 cm from two slits that...

    In a Young's double slit experiment a screen is placed 85.0 cm from two slits that have a spacing of 0.300 mm. The slits are illuminated with coherent light with a wavelength of 540 nm. (a) What is the distance between the first and third-order dark fringes? (b) What is the distance between the first-order bright fringe and the second order dark fringe?

  • 1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of...

    1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 576 nm and the interference pattern observed on a screen 3.50 m from the slits. What is the difference in path lengths from the two slits to the location of a third order bright fringe on the screen? 1(B) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102...

  • Two parallel slits are illuminated by light composed of two wavelengths. One wavelength is λA =...

    Two parallel slits are illuminated by light composed of two wavelengths. One wavelength is λA = 657 nm. The other wavelength is λB and is unknown. On a viewing screen, the light with wavelength λA = 657 nm produces its fifth-order bright fringe at the same place where the light with wavelength λB produces its sixth dark fringe. The fringes are counted relative to the central or zeroth-order bright fringe. What is the unknown wavelength in nm?

  • (6) With the aid of an appropriate diagram, show that for Young's double slit experiment, y...

    (6) With the aid of an appropriate diagram, show that for Young's double slit experiment, y = 2. D/a, where 2 is the wavelength of the source, a is the slit separation, D is the distance between the slits and the screen, and y is the separation between the central bright fringe and the first order fringe. (c) In Young's double slit experiment, the slit spacing was 0.56 mm and the distance across the four-fringe spacing was 3.6 mm when...

  • Two narrow slits are illuminated by a laser with a wavelength of 514 nm. The interference...

    Two narrow slits are illuminated by a laser with a wavelength of 514 nm. The interference pattern on a screen located x = 4.60 m away shows that the third-order bright fringe is located y = 9.00 cm away from the central bright fringe. Calculate the distance between the two slits. 7.88×10-3 cm You are correct. Previous Tries The screen is now moved 1.1 m further away. What is the new distance between the central and the third-order bright fringe?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT