Question

Air enters the compressor of an ideal Brayton refrigeration cycle at 140 kPa, 270 K, and...

Air enters the compressor of an ideal Brayton refrigeration cycle at 140 kPa, 270 K, and is compressed to 420 kPa. At the turbine inlet, the temperature is 320 K and the volumetric flow rate is 0.4 m3/s. Determine (a) the mass flow rate, in kg/s (b) the net power input, in kW (c) the refrigerating capacity, in kW (d) the coefficient of performance Round answers to 3 significant digits.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 32ok НЕ 420 2. 1Yo Stati Stati 2PPri 2. 40 PY3 7325 ру 420RTI 3 a 10 Ν.m 01228t s 122 370- 1-2 320 29 -233. 61 9.619 ku i9 26 3 tw CoP 26.3° -2-792- 619

Add a comment
Know the answer?
Add Answer to:
Air enters the compressor of an ideal Brayton refrigeration cycle at 140 kPa, 270 K, and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (6) Gas Refrigeration Air is the working fluid of a Brayton refrigeration cycle with a compressor...

    (6) Gas Refrigeration Air is the working fluid of a Brayton refrigeration cycle with a compressor pressure ratio of 3. At the beginning of the compression, the temperature Ti = 270 K and pressure P1 = 140 kPa. The turbine inlet temperature is T3 = 320 K. You may assume both heat exchangers operate without pressure losses. Draw a T-s diagram for this ideal cycle. If the volumetric flow rate at State 3 is 0.4 m3/s, what is the mass...

  • Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...

    Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 7.5 m3/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1400 K. Determine the following: The thermal efficiency of the cycle The back work ratio The net power developed in kW

  • 2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K,...

    2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetnc flow rate of 20 m'/s. The turbine inlet temperature is 1500 K. For compressor pressure ratios of 20 find a) the heat addition and rejection in kW b) the net power developed, in kW c) the thermal efficiency of the cycle d) the back work ratio.

  • Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with...

    Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with a mass flow rate of 6 kg/s. the compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k = 1.4, calculate a. The thermal efficiency of the cycle b. The back work ratio c. The net power developed, in kW d. Reconsider the above with an ideal regenerator.

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • The refrigerant gas which is air, enters the compressor of a Brayton refrigeration cycle at 101...

    The refrigerant gas which is air, enters the compressor of a Brayton refrigeration cycle at 101 kPa, 280 K. If the compressor pressure ratio is 5 and the turbine inlet temperature is 330 K. The compressor has an isentropic efficiency of 70% and the turbine has an isentropic efficiency of 80%. Using air table rather than constant-specific-heat theory, determine (a) the net work input per unit mass of air flow, (b) the refrigeration capacity, in kJ/kg, (c) the coefficient of...

  • Air enters the compressor of an ideal air standard Brayton cycle at 195 kPakPa, 298 KK,...

    Air enters the compressor of an ideal air standard Brayton cycle at 195 kPakPa, 298 KK, with a volumetric flow rate of 7 m3/sm3/s. The compressor pressure ratio is 8. The turbine inlet temperature is 1400 KK. The compressor has an efficiency of 90%% and the turbine has an efficiency of 75%%. A) Determine the thermal efficiency (ηth,Braytonηth,Brayton). B) Determine the net power output (W˙netW˙net). C) Determine the back work ratio.

  • Brayton Cycle

    Air enters the compressor of an ideal air standard Brayton cycle at 100 kPa, 300 K, with  a volumetric flow rate of 5 m3/s. The compressor pressure ratio is 10. The turbine inlet  temperature is 1400 K. Which of the following is the back work ratio if the efficiency of  the turbine and compressor is 80%?

  • Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...

    Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.

  • Air (use the PG model) enters the compressor of an ideal air standard Brayton cycle at...

    Air (use the PG model) enters the compressor of an ideal air standard Brayton cycle at 100 kPa and 305 K with a volumetric flow rate of 5 m/s. The compressor pressure ratio is 12. The turbine inlet temperature is 1000 K. Part A Determine the thermal efficiency (17th, Brayton) Express your answer to three significant figures. V AED 11 vec Submit Request Answer Part B Determine the net power output (Wet). Express your answer to six significant figures and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT