Question

17. What is the thermal resistance if the composite wall shown has an exposed surface area of 120 m2? a) 9.6 x 105 K/W b) 7.1 x 105 K/W c) 6.3 x 105 K/W d) 2.7 x 10 K/W e 17.9 x 103 K/W -200 62-50 m K m-K 50°C 500°C 200°C 0.5 m
0 0
Add a comment Improve this question Transcribed image text
Answer #1

The rate of heat transfer by Fourier's equation is given by:

Q=\frac{kA\Delta T}{L}=\frac{\Delta T}{\frac{L}{kA}}=\frac{\Delta T}{R}

where R is the resistance.

Here the resistance is in series

\therefore R = R_1 +R_2

R_1= \frac{0.3}{200\times120}=1.25\times10^{-5}

R_2= \frac{0.5}{50\times120}=8.33\times10^{-5}

a) R=(1.25+8.33)\times10^{-5}=9.58\times10^{-5} K/W

Add a comment
Know the answer?
Add Answer to:
17. What is the thermal resistance if the composite wall shown has an exposed surface area...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the 1D plan composite wall shown in the figure made of three regions.Only in region...

    Consider the 1D plan composite wall shown in the figure made of three regions.Only in region B, there is a uniform thermal energy generation qB. The left side of wall A is insulated, and the right side of wall B is exposed to convection. There is thermal resistance between region B and region C. The numerical values are given below. Problem 1. Consider the 1D plan composite wall shown in the figure made of three regions. Only in region B,...

  • The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of...

    The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m * 3.0 m) with a heat transfer coefficient of 255 W/m2K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m long and the heat transfer...

  • Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity...

    Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall is exposed to convection on both sides, with different heat transfer coefficients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown (L =20 mm) and thermal conductivity of 250 W/m-K. What is the maximum temperature that will occur in the wall? L tt-2 mm k=25...

  • The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of...

    The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m 3.0 m) with a heat transfer coefficient of 255 W/m2K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m long and the heat transfer coefficient...

  • Question 11 (15 points) The wall of a liquid-to-gas heat exchanger has a surface area on...

    Question 11 (15 points) The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m * 3.0 m) with a heat transfer coefficient of 255 W/m2 K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m...

  • 3.77 The exposed surface (x= 0) of a plane wall of thermal conductivity k is subjected...

    3.77 The exposed surface (x= 0) of a plane wall of thermal conductivity k is subjected to microwave radiation that causes volumetric heating to vary as where qo (W/m) is a constant. The boundary at x = L is perfectly insulated, while the exposed surface is main- tained at a constant temperature To. Determine the tem- perature distribution T(a) in terms of x, L, k, 4or and T

  • The composite wall of an oven consists of threematerials, two of which are of known thermal...

    The composite wall of an oven consists of threematerials, two of which are of known thermal conductivity,kA = 20 W/m•K and kC =50 W/(m•K), and known thickness, LA =0.30m and LC = 0.15m. The third material,B, which is sandwiched between materials A andC, is known thickness, LB = 0.15m, butunknown thermal conductivity kB. Under steady-state operating conditions, measurementsreveal an outer surface temperature of Ts,o =20ºC, an inner surface temperature of Ts,i= 600ºC, and an oven air temperature ofT¥=800ºC. The inside...

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

  • A planar wall is composed of two materials, wall 1 has a uniform heat generation of...

    A planar wall is composed of two materials, wall 1 has a uniform heat generation of 1.5 x 106 W/m3 and a thermal conductivity of 60 Wm.Κ. Wall 2 has no heat generation and thermal resistance of 150 W/m.K. The inner surface of Wall 1 is well insulated, while the outer surface of Wall 2 is exposed to 30°C fluld. The temperature of the wall surface exposed to the fluid is most nearly 00 heat flow fluid at 30°C h...

  • 3. The wall shown in the figure below has thickness L 0.25 m and uniform thermal...

    3. The wall shown in the figure below has thickness L 0.25 m and uniform thermal conductivity k-1 W/mK. It is exposed to circulating fluid on the surface at x = L, where the temperature ofthe fluid is T-= 30°C and the convection coefficient is h = 4 W/m2.K. The surface at x = 0 is maintained at constant temperature T-20 °C. Assume ID heat flux, and that the system is at steady state a) b) Determine the temperature distribution...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT