Question

QUESTION 15 Calculate the current I E/ZT (in mA) in the series circuit shown. The source voltage E5 Vrms, the resistance is R-47 W , and the inductor reactance is XL = 33 W . (Enter your answer as the number of mA without the units.) 5 V RMS 350 Hz

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
QUESTION 15 Calculate the current I E/ZT (in mA) in the series circuit shown. The source...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Inductive Reactance: Build a series circuit in Multisim containing a 1ks Resistor, 33mH inductor L, and...

    Inductive Reactance: Build a series circuit in Multisim containing a 1ks Resistor, 33mH inductor L, and 4 VRMS 8kHz sinewave source. Calculate the, Inductive reactance X_ showing your formula: XL = ΚΩ Then measure the following with whatever Multisim instrument you want: Inductor peak-peak voltage VLpp = Resistor RMS voltage VRrms = Inductor RMS voltage Verms = Circuit RMS current Irms = mA

  • In an R-L-C series circuit, the magnitude of the phase angle is 40.0o, with the source...

    In an R-L-C series circuit, the magnitude of the phase angle is 40.0o, with the source voltage behind the current. The reactance of the capacitor is 300 ohms, and the resistor resistance is 150 ohms. The average power delivered by the source is 120 W. a. What is the reactance of the inductor? b. What is the impedance of the circuit? c. What is the rms current in the circuit? d. What is rms voltage of the source?

  • Use the information below to answer the next two questions about RLC series circuit. A RLC...

    Use the information below to answer the next two questions about RLC series circuit. A RLC series circuit has R=5.0082,L=0.0150H and C = 330x106. This circuit is connected to an AC source with Vrms = 120V and f = 60.0Hz. What is the inductive reactance of the RLC series circuit? Answer: 22 What is the capacitive reactance of the RLC series circuit? Answer: What is the impedance of the circuit? Answer: What is the rms current in the circuit? Answer:...

  • QUESTION 7 In the parallel LC crcuit of the figure shown below, a 60-Hz voltage source...

    QUESTION 7 In the parallel LC crcuit of the figure shown below, a 60-Hz voltage source S-20 , 0 V delivers a source current IS = 5 / 6 A to the crcuit if the resulting magnitude of capacitor current Ic is two times the magnitude of the inductor current IL, determine the value of the inductance reactance XL (in ohms) in this circuit. (Enter your answer as a number without the units.) Ic Vs

  • 12. A sinusoidal voltage Δv = (75.0 V)sin(120t) is applied to a series RLC circuit with...

    12. A sinusoidal voltage Δv = (75.0 V)sin(120t) is applied to a series RLC circuit with L = 20.0 mH, C = 130.0 μF, and R = 32.0 Ω. (a) What is the impedance of the circuit? Ω (b) What is the maximum current in the circuit? A 11.An AC power source has an rms voltage of 120 V and operates at a frequency of 60.0 Hz. If a purely inductive circuit is made from the power source and a...

  • In the circuit shown in the figure, the 60-Hz ac source has a rms voltage amplitude...

    In the circuit shown in the figure, the 60-Hz ac source has a rms voltage amplitude of 120 V, the capacitive reactance is 600 2 the inductive reactance is 150 2 and the resistance is 450 12 a) What is the inductance Lof the inductor? (2 pts) b) What is the capacitance C of the capacitor? (2 pts) c) What is the impedance of the circuit? (1 pts) 60 Hz R

  • I need help for (e),(f), and (g) R 00000 с (a) If an RCL series circuit...

    I need help for (e),(f), and (g) R 00000 с (a) If an RCL series circuit contains a resistance R = 349 2. a capacitance C = 4.4 uF, and an inductance of L = 0.24 H, calculate the inductive reactance X{ if the circuit is connected to a voltage source whose frequency is 449 Hz. Ω | Help Reset Enter X1. = 677.0760487 677.0760487 OK (6) Calculate the capacitive reactance XC for the same conditions in part A. 2...

  • 1 ) A series circuit consisted of R= 10 KΩ, L= 42 mH , C= 2.1...

    1 ) A series circuit consisted of R= 10 KΩ, L= 42 mH , C= 2.1 µF is connected to an alternative voltage with maximum voltage of Vm = 24 V and frequency of 300.0 Hz. Find the following: Show the formula for each question. Show your Calculations – put result in a box with its unit. Please write your answer under each question a)Find the value of angular frequency ω . b) Inductive Reactance ( XL) c)Capacitive Reactance (...

  • A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20...

    A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20 ur, and a source with ΔⅤmax-240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance 69.11 (b) Calculate the capacitive reactance 757.88 (c) Calculate the impedance 141 (d) Calculate the resistance in the circuit. 6.887 The impedance is a function of the resistance and the impedances of the inductor and capacitor. kΩ (e) Calculate...

  • A series AC circuit contains a resistor, an inductor of 200 mH, a capacitor of 4.30...

    A series AC circuit contains a resistor, an inductor of 200 mH, a capacitor of 4.30 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 180 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT