Question

Participation Problem 6-4 Assuming ideal gas and constant Cp, calculate Δ S (in kJ/( from 200 K to 800 K while changing the p

0 0
Add a comment Improve this question Transcribed image text
Answer #1

8oo aooo

Add a comment
Know the answer?
Add Answer to:
Participation Problem 6-4 Assuming ideal gas and constant Cp, calculate Δ S (in kJ/( from 200...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the change in enthalpy as 1 Kg of nitrogen is heated from 1000 K to...

    Calculate the change in enthalpy as 1 Kg of nitrogen is heated from 1000 K to 1500 K, assuming the nitrogen is an ideal gas at a constant pressure. The temperature-dependent specific heat of nitrogen is: Cp = 39.06 - 512.79T^-1.5 + 1072.7T^-2 - 820.4T^-3, Cp is in kJ /kmole· K, and T is in K. a) 600 kJ b) 700 kJ c) 900 kJ d) 800 kJ e) 1000 kJ

  • constant specife heats An ideal gas wit of cp .1 kJ/(kg K) and c 0.75 kJ/(kg...

    constant specife heats An ideal gas wit of cp .1 kJ/(kg K) and c 0.75 kJ/(kg K) is contained in the piston-cylinder device shown. Initially, the vol- ume is 50 cm3 and the temperature is 20°C. How much heat must be added to double the volume if the final pressure and temperature are 400 kPa and 1000 K respectively. g·K) and Cu- Ideal gas Linear spring

  • Two kg of air as an ideal gas with constant properties expands inside a piston-cylinder device...

    Two kg of air as an ideal gas with constant properties expands inside a piston-cylinder device from an initial state where P. - 200 kPa. T-7°C to a state where P2 - 100 kPa and T2- 327° (Assume cp = 1.003 kJ/Kg.K.cv -0.716 kJ/kg.K. and R=0.287 kJ/Kg.K). 3. The change in internal energy, in kJ, between the specified states is most nearly: -483 460 - 166 -241 -322 120 . 231 144

  • 4. An ideal gas with constant specific heats undergoes a process from an initial pressure of...

    4. An ideal gas with constant specific heats undergoes a process from an initial pressure of 50 kPa and initial specific volume of 4 m^3/kg to a final pressure of 80 kPa and final specific volume of 5 m^3/kg. The mass of the carbon monoxide is 3 kg. The gas has a molar mass of 44 kg/kmol and a specific heat at constant volume of 0.98 kJ/(kg∙K). Determine the entropy change of the gas during the process in kJ/K.

  • Required information A four-cylinder, four-stroke, 1.8-L modern high-speed compression- ignition engine operates on the ideal dual...

    Required information A four-cylinder, four-stroke, 1.8-L modern high-speed compression- ignition engine operates on the ideal dual cycle with a compression ratio of 16. The air is at 95 kPa and 70°C at the beginning of the compression process, and the engine speed is 2000 rpm. Equal amounts of fuel are burned at constant volume and at constant pressure. The maximum allowable pressure in the cycle is 7.5 MPa due to material strength limitations. Use constant specific heats at 1000 K....

  • 1. A process has been proposed in which an ideal gas (Cp 30 kJ kmol K1)...

    1. A process has been proposed in which an ideal gas (Cp 30 kJ kmol K1) is taken from 10 bar and 300 K to 1 bar and 500 K in a closed system. During the process the system does 1000 kJ of work and received 5430 kJ of heat from the surroundings at 300 K. Is this process possible?

  • 48 g of methane (CH4) gas is heated reversibly from 200 K to 1800 K at...

    48 g of methane (CH4) gas is heated reversibly from 200 K to 1800 K at constant pressure conditions. The constant-pressure molar heat capacity of CH4 from 200 K to 1800 K is given by: Cp, molar (T) a + bT + cT-2 where a, b, and c, are constants For CH4, these constants these constants have the values a = JK2 mol, and c =1.825x104 JKmol -1. 31.50 JKmol -1, b 3.824 x10 Calculate the value of AH (in...

  • IDEAL GAS with Compressibility Factor Z correction Problem 2) Find the specific volume of the gas...

    IDEAL GAS with Compressibility Factor Z correction Problem 2) Find the specific volume of the gas in Problem 1A(=1.48ft^3/lbm) using the compressibility factor Z. IDEAL GAS STATE Problem 1) Air is at 200F and a pressure of 50 psia. Assuming ideal gas estimate the specific volume of this air at this condition. Air at a density of 1.2 kg/m3 is at a pressure of 150 Kpa. Find the temperature of the air assuming ideal gas. Find the specific volume of...

  • 4) An ideal-gas mixture of helium and nitrogen with a nitrogen mass fraction of 35 percent...

    4) An ideal-gas mixture of helium and nitrogen with a nitrogen mass fraction of 35 percent is contained in a piston-cylinder device arranged to maintain a fixed pressure of 700 kPa. The mixture is heated from 300 K to 500 K a. Determine the molar mass and gas constant for the mixture. b. Determine the work produced, in kJ/kg. (Hint: Try finding the specific c. Determine the constant-volume and constant-pressure specific heats (Answer: 5.72 kg/kmol, 1.45 kJ/kg K) volumes at...

  • QUESTION 4 Determine the final pressure (kPa) for a gas undergoing a process from state 1...

    QUESTION 4 Determine the final pressure (kPa) for a gas undergoing a process from state 1 (T1 = 300 K, P1 = 129 kPa) to a temperature of T2 = 839 K if s2 - s1 = 0.903 kJ/kg-K. Assume constant specific heats as given below (DO NOT USE the ideal gas tables). Cp = 1.135 kJ/kg-K Cv = 0.759 kJ/kg-K

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT