Question

A mass weighing 16 lb stretches a spring 3 in. The mass is attached to a viscous damper with a damping constant of 2 lbs/ft.Find the time t such that lu(t) < 0.01 inches for all t > T. (Round your answer to four decimal places.)

I have gotten 1.5927 but says it's wrong. Thanks in advance

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Page Solution: Ilb= 0:45359237 kg 16 lb = 1680.45359237 1 kg = 7.26 kg 1 inch 0.0254 meters 3 inch 0.0762 meters. 6 inch = 0.= ab-g ft С= а( б•4535931)(416) -S 005 m . - 39. 03 N-s | eDate Page Now Framing - at ky visons fund at t=o Tacion w Girls liguid) mg at accreation (say) Nelton e second law mass x acc+ 20 equation became d²y Ady + 128 y por Auxiliary so lutuin let diy N 12 dy-t, V at2 at 10 عل dt? at 22 + 4x + 128 = 0 q= -4Page here ylt) ulto) Released from equitienim position) A (1) + BLO) = 0 e (A)=0 A=0 dulti re 1.524 mis at t=0 2tr Asin (11:1

Add a comment
Know the answer?
Add Answer to:
I have gotten 1.5927 but says it's wrong. Thanks in advance A mass weighing 16 lb...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass weighing 16 lb stretches a spring 3 in. the mass is attached to a viscous damper with a da...

    A mass weighing 16 lb stretches a spring 3 in. the mass is attached to a viscous damper with a damping constant of 2 lb s/ft. if the mass is set in motion from its equilibrium position with a downward velocity of 3 in/s. (1) find its position u(t) at any time t. Plot u versus t. (2) Determine the quasi frequency and the quasi period. (3) find the time τ such that |u(t)| < 0.01 in for all t...

  • A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a...

    A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a viscous damper with damping constant 3 lb ·s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a...

    A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a viscous damper with damping constant 3 lb-s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 6 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached...

    < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached to a viscous damper with damping constant 4lb-s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 5 in/s. Determine the position u of the mass at any time t. Use 32 ft/s” as the acceleration due to gravity. Pay close attention to the units. u(t) = in

  • A mass weighing 8 lb stretches a spring 3 in. The mass is attached to a...

    A mass weighing 8 lb stretches a spring 3 in. The mass is attached to a viscous damper with a damping constant of 2 lb-s/it. If the mass is set in motion from its equilibrium position with a downward velocity of 2 in /s, find its position at any time 1. Assume the acceleration of gravity g = 32 ft/s? e sin4/7 245 'sini 1 1 "costri 1 1 1 24 vi cos7+ 24/7 sin 45 "cosa + V7 sin...

  • An object weighing 16 lb streches a spring 3 in. The object is attached to a...

    An object weighing 16 lb streches a spring 3 in. The object is attached to a viscous damper with a damping constant of 2 lb-s/ft. If the object is set in motion from its equilibrium position by pulling it downward an additional 1 inch, find the position of the object at any time t.

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

  • A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in...

    A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in a medium that offers a damping force numerically equal to 3 times the instantaneous velocity. The mass is initially released from the equilibrium position with a downward velocity of 4 ft/s. Find the spring constant ?, mass ? and the damping constant ? Find ? and ?, and the roots of the characteristic equation: Write the initial conditions: Estimate the time when the mass...

  • . (25 points) A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in. and then released, and if there is no damping, determine the position u of the mass at a...

    . (25 points) A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in. and then released, and if there is no damping, determine the position u of the mass at any time t. Draw the graph of u(t), find the frequency, period and amplitute of the motion. . (25 points) A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in....

  • 21. A mass weighing 122.5 g stretches a spring by 7- F(f)-0.2e-2 N. The spring is...

    21. A mass weighing 122.5 g stretches a spring by 7- F(f)-0.2e-2 N. The spring is set in motion from its equilibrium position with a downward velocity of I m/s. Find an equation for the position of the spring at any time t. A cm. The damping constant is c 0.4. External vibrations create a force of 32 21. A mass weighing 122.5 g stretches a spring by 7- F(f)-0.2e-2 N. The spring is set in motion from its equilibrium...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT