Question

1. Consider a finite square-well for which the size of the potential is Vo = 2m ( where € < 1. Show that one and only one bo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The sehrodinger eq, - th dy tvo 4 = E4 2m dx² ? Here, m m= mass of the particle telin is planks const. Vo = finite potentiaFor any difficulty , do comment.

Add a comment
Know the answer?
Add Answer to:
1. Consider a finite square-well for which the size of the potential is Vo = 2m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a finite square barrier potential shown below. Figure A. For a<x<b, the space part of...

    Consider a finite square barrier potential shown below. Figure A. For a<x<b, the space part of the electron wave function has the form: k? = 2mE/h? and gu2m(V,-E)/h2 (a) Aeikx (b) Aegn (c) Ae*** + Be** (d) Ae* (e) Aelkx + Be-ika For the finite square barrier potential shown below, Figure A. For x<a, the space part of the electron wave function has the form: k = 2mE/h? and g=2m(Vo-E) /h (a) Aeikx (b) Aetex (c) Ae*EN + Bet* (d)...

  • Consider a particle of mass in a 10 finite potential well of height V. the domain...

    Consider a particle of mass in a 10 finite potential well of height V. the domain – a < x < a. a) Show that solutions for – a < x < a take the form on (x) = A cos(knx) for odd n, and on (x) = A sin(knx) for even n. . Show a) Match the boundary conditions at x = a to prove that cos(ka) = Bk where k is the wave vector for -a < x...

  • 1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a)...

    1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for...

  • 4.) A spherical square well is a square well in three spatial dimensions which satisfies -Vo,...

    4.) A spherical square well is a square well in three spatial dimensions which satisfies -Vo, ifr <a/2; (3) V (r) = 0, ifr>a/2, where r is the radial coordinate and a is a constant. a) Determine the ground-state solution to the effectively one-dimensional Schroedinger equation in r for a particle of mass m, as well as the transcendental equation the ground-state energy must satisfy. b) If you replace r by a, the one-dimensional coordinate, does your answer differ from...

  • Consider the symmetrical finite square well potential shown below. U(x) = 46 eV for xs-L/2 U(x)...

    Consider the symmetrical finite square well potential shown below. U(x) = 46 eV for xs-L/2 U(x) 0 eV for-L/2 < x < L/2 U(x) 46 eV for x 2 L/2 L-0.27mm Note: 46 ev 1. the width L is unchanged from the infinite well you previously considered 2, the potential outside x-±L/2 is finite with U-46 eV. 3. you found the three lowest energy levels for that infinite -8.135 0.135 potential well were: 5.16 ev, 20.64 ev, and46.45 ev. 1)...

  • 1. An electron in a finite well An electron is in a finite square well that is 20 eV deep and 0.2...

    1. An electron in a finite well An electron is in a finite square well that is 20 eV deep and 0.25 nm wide. You may use all results from class/textbook without re-deriving therm A. (2 pts) By graphing both sides of the quantization condition like we did in class, determine how many bound energy eigenstates exist for this well. Don't forget that there are two quantization conditions, one for the even solutions, and one for the odd solutions! B....

  • Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x...

    Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x < 0 V(x) = { -V. 0 < x < a 10 x > a We showed in the homework that the allowed energies for the eigenstates of a bound particle (E < 0) in this potential well satisfy the transcendental function -cotĚ = 16 - 52 $2 where 5 = koa, and ko = V2m(Vo + E)/ħ, and 5o = av2mV /ħ (a)...

  • Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well...

    Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well potential of depth Vo, V(x) = -{ S-V., –a sx sa 10, else In lecture we explored the even bound state solutions for this potential. In this problem you will explore the odd bound state solutions. Consider an energy E < 0 and define the (real, positive) quantities k and k as 2m E K= 2m(E + V) h2 h2 In lecture we wrote...

  • The Finite Square Wel A more realistic version of the infinite square well potential has a...

    The Finite Square Wel A more realistic version of the infinite square well potential has a finite well depth: -a V(x)--V for -a<x <a for x <-a,'r > a =0 This assignment will consider the bound states of a particle (of mass m) in this potential (i.e. total energy E <0). (1) Determine the general solutions to the time-independent Schrödinger equation for the three regions x <-a, -a<x <a, and > a. Write these solutions in terms of k and...

  • Consider the finite rectangular barrier described by the potential: where Vo is a real and positive...

    Consider the finite rectangular barrier described by the potential: where Vo is a real and positive constant. 1. How many bound states does this potential admit? 2. Find the transmission coefficient for a scattering state with energy E Vo 0

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT