Question

A mass-spring system (m = .50 kg, k = 1200 N/m) is given an initial compression of .05m. The system then oscillates horizontaPlease Hand write the answer and show which equations are used. Thanks!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Criven : a) m= 0.5 0kg 9 20 = 0.05m k = 1200 N (PE); = 4k X62 = (200N) * (0.05m)2 -1.5J K.Emax = (.)= 1.5J Im a max? = (k.Ema

Add a comment
Know the answer?
Add Answer to:
Please Hand write the answer and show which equations are used. Thanks! A mass-spring system (m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (10%) Problem 4: A mass m= 3.6 kg is at the end of a horizontal spring...

    (10%) Problem 4: A mass m= 3.6 kg is at the end of a horizontal spring of spring constant k=185 N/m on a frictionless horizontal surface. The block is pulled, stretching the spring a distance A = 5.5 cm from equilibrium, and released from rest. A 17% Part (a) Write an equation for the angular frequency w of the oscillation. HA17% Part (b) Calculate the angular frequency w of the oscillation in rad/seconds. A 17% Part (c) Write an equation...

  • please answer as many questions as possible. I will “thumb up” the answers. Thanks! 1. You are on a boat, which is bobbing up and down. The boat's vertical displacement y is given by y 1.2...

    please answer as many questions as possible. I will “thumb up” the answers. Thanks! 1. You are on a boat, which is bobbing up and down. The boat's vertical displacement y is given by y 1.2 cos(t). Find the amplitude, angular frequency, phase constant, frequency, and period of the motion. (b) Where is the boat at t 1 s? (c) Find the velocity and acceleration as functions of time t. (d) Find the initial values of the position, velocity, and...

  • A spring stretches 0.150 m when a 0.300 kg. mass is hung vertically from it. From...

    A spring stretches 0.150 m when a 0.300 kg. mass is hung vertically from it. From this information you can determine the spring constant, k. Next, the spring is set up horizontally with the 0.300 kg. mass resting on a frictionless table. The block is pushed so that the spring is compressed 0.100 m from the equilibrium point, and released from rest. Determine: The spring constant k (in N/m)? The amplitude of the horizontal oscillation (in m)? The angular frequency,...

  • Please show all steps 4 A 175 g mass attached to a horizontal spring oscillates at...

    Please show all steps 4 A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t-0 s, the mass is at x-5.40 cm and has v -34.0 cm/s. Determine: The period, angular frequency (w), amplitude, phase constant, maximum speed, maximum acceleration, and total energy

  • A system of mass(m=100g) and spring(k=100N/m)on a horizontal surface . The mass displaced 5 cm from...

    A system of mass(m=100g) and spring(k=100N/m)on a horizontal surface . The mass displaced 5 cm from its equilibrium position and released. Find: (1) Angular frequency and frequency of motion? (2) Maximum velocity and maximum acceleration of vibrations ? (3) The total energy of the system? (4) Wright down the equation of motion?

  • would you please solve as much as you can since their short questions? 22. Four identical...

    would you please solve as much as you can since their short questions? 22. Four identical balls of mass 0.6 kg are fastened to a massless rod whose total length is 1 m. The rod spins at 8 rad/s. The moment of inertia of this system, in units of kg m', is A) 0.61 D) 0.93 C) 1.81 B) 0.72 E) 1.22 A meter stick on a horizontal frictionless table top can rotate about the 80-cm mark. A 10 N...

  • A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...

    A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 6.80 N is applied. A 0.510-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...

  • A 220 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz....

    A 220 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz. At t =0s, the mass is at x= 4.60 cm and has Vx =− 32.0 cm/s . Determine: I got the first 4 part answer, Period = 0.4 s, Amplitude = 5.03 x 10-2m, Angular frequency = 15.7 rad/s, Phase Constant = 0.417 rad Questions: 1) The maximum speed. 2) The maximum acceleration. 3) The total energy. 4) The position at t = 0.4s

  • A 750-gram block is attached to a spring as shown in the following diagram. The system is placed on a horizontal surfac...

    A 750-gram block is attached to a spring as shown in the following diagram. The system is placed on a horizontal surface. The block is released at a distance of 0.15 m from the equilibrium position at Xo. It oscillates back and forth with a frequency of 0.25 Hz. Assume that the surface is frictionless. The oscillation is an SHM. (a) Find the spring constant. (b) Find the elastic P.E. in the system when the block is at the maximum...

  • When a 200 g mass attached to a horizontal spring (k= 25 N/m) is pushed 10...

    When a 200 g mass attached to a horizontal spring (k= 25 N/m) is pushed 10 cm into the spring and released, it undergoes simple harmonic motion. Find the quantities below for this oscillating system: (a) The angular frequency (rad/sec) b) Th Period of the oscilation (sec) c) The frequency (Hz) d) The maximum speed (m/s) (e) Maximum acceleration (m/s2)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT