Question

A diverging lens located in the y-z plane at x - 0 forms an image of an arrow at x = x2 =-27.5 cm. The image of the tip of the arrow is located at y -y2 - 5 cm. The magnitude of the focal length of the diverging lens is 49.1 cm light (x2.y2) image 1) What is x1, the x co-ordinate of the object arrow?. 62.5 You currently have 7 submissions for this question. Only 15 submission are allowed You can make 8 more submissions for this question cm Submit 2) What is y1, the y co-ordinate of the tip of the object arrow? 11.36 cm Submit 3) A converging lens of focal length fconverging 16.06 cm is now inserted at x X3-41.26 cm. In the absence of the diverging lens, at what x co-ordinate, X4, would the image of the arrow form? light mage in absence of diverging lens 4 9.15 cm Submit

4) To determine the image of the arrow from the combined converging diverging lens system, we take the image from the converging lens (in the absence of the diverging lens) to be the object for the diverging lens. If this image is downstream of the diverging lens, the object for the diverging lens is virtual. All this means is that the rays entering the diverging lens are converging towards a location downstream of the diverging lens. The final image can be calculated using this virtual object distance and the focal length of the diverging lens. If this description seems unclear to you, you can check out the more detailed description of multiple lens systems given in the Optical Instruments unit. What is x5, the x co-ordinate of the final image of the combined system? cm Submit 5) Is the final image of the arrow real or virtual? Is it upright or inverted? Real and upright Real and inverted Virtual and upright Virtual and inverted Submit

# 1 and 2 are already done correctly, please do not solve

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer object distance fom the comerging lens is the ihe distance of the imoge formed by the anvegog lens in the basence f the divenn is e image to IG,0 G -al.au 341-114 + S.18 fre -coordinate of the image forned by the conver in ens is % image. Imed by the Couerging , lens acts as object or the diterginens the object distance tor the diver enss u24.59 cm ae distance of final image. formed by the diveri lens is tu pHu The Pinal ima is reak and inverted

Add a comment
Know the answer?
Add Answer to:
# 1 and 2 are already done correctly, please do not solve A diverging lens located...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A diverging lens located in the y-z plane at x = 0 forms an image of...

    A diverging lens located in the y-z plane at x = 0 forms an image of an arrow at x = x2 = -14.1 cm. The image of the tip of the arrow is located at y = y2 = 6.3 cm. The magnitude of the focal length of the diverging lens is 28.8 cm. light image х 1 Ay 3) A converging lens of focal length fconverging = 9.02 cm is now inserted at x = x3 = -14.36...

  • Single Lens System

    A lens located in the y-z plane at x = 0 forms an image of an arrow at x = x2 = 112.4 cm. The tip of the object arrow is located at(x,y) = (x1, y1) = (-45.9 cm, 4.91 cm). The index of refraction of the lens is n = 1.43.1) What is flens, the focal length of the lens? If the lens is converging flens is positive. It the lens is diverging, flens is negative.2) What is y2,...

  • A system of two lenses forms an image of an arrow at x = x3 =...

    A system of two lenses forms an image of an arrow at x = x3 = 57.9 cm. The first lens is a diversing lens located at x = 0 and has a focal length of magnitude f. = 12.4 cm. The second tens is located atx=27=25.8 cm and has an unknown focal length. The tip of the object arrow is located at (x,y) = (x, y) = (-36.6 cm, 12.1 cm). 1) What is xi, the x co-ordinate of...

  • A system of two converging lenses forms an image of an arrow as shown. The first...

    A system of two converging lenses forms an image of an arrow as shown. The first lens is located at x and has a focal Length off, = 9.5 cm. The second lens is located at x = x2 = 52 cm and has a focal length of fx = 17.9 cm. The tip of the object arrow is located at (x,y) = x,y) (-14.2 cm, 3 cm). 1) What is x1, the x co-ordinate of image of the arrow...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

  • A converging lens with a focal length of 4.2 cm is located 20.7 cm to the...

    A converging lens with a focal length of 4.2 cm is located 20.7 cm to the left of a diverging lens having a focal length of -11.5 cm. If an object is located 9.2 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? Submit Answer Tries 0/10 What is the magnification? Submit Answer Tries 0/10 Also determine, with...

  • A converging lens with a focal length of 6.0 cm is located 24.0 cm to the...

    A converging lens with a focal length of 6.0 cm is located 24.0 cm to the left of a diverging lens having a focal length of -13.0 cm. If an object is located 11.0 cm to the left of the converging lens, locate and describ completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? 63.81 cm Submit Answer Incorrect. Tries 3/10 Previous Tries What is the magnification? Submit Answer...

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • 2. Two thin lenses, one a converging lens and the other a diverging lens, are arated...

    2. Two thin lenses, one a converging lens and the other a diverging lens, are arated by 1.00 m along the same principal axis, as shown in the figure. The magnitude of the focal length of the converging lens is 25 cm, while the magnitude of the focal length of the diverging lens is 40 em. An object 8,25 cm tall is placed 35 cm to the left of the converging lens. (a) Where is the final image produced by...

  • 1.) An object is placed in front of a diverging lens with a focal length of...

    1.) An object is placed in front of a diverging lens with a focal length of 17.7 cm. For each object distance, find the image distance and the magnification. Describe each image. (a) 35.4 cm location _____cm magnification _____ nature real virtual upright inverted (b) 17.7 cm location _____  cm magnification _____ nature real virtual upright inverted (c) 8.85 cm location _____ cm magnification _____ nature real virtual upright inverted 2.) An object is placed in front of a converging lens...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT