Question

KULL Illustrate the ATP hydrolysis reaction its regeneration and the AG for both reactions. Show where energy is released in
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer 1

ATP is hydrolyzed into ADP as per the following reaction:

ATP+H2O→ADP+Pi+free energy

Hydrolysis of ATP to ADP is reversible. ADP + Pi regenerate ATP from ADP.

ATP synthesis require an input of free energy whereas ATP hydrolysis releases energy.

ADP is combined with a phosphate to form ATP in the following reaction:

ADP+Pi+free energy→ATP+H2O

The calculated ∆G for the hydrolysis of one mole of ATP into ADP and Pi is −7.3 kcal/mole (−30.5 kJ/mol). However, this is only true under standard conditions, and the ∆G for the hydrolysis of one mole of ATP in a living cell is almost double the value at standard conditions: 14 kcal/mol (−57 kJ/mol).

  • The energy released from the hydrolysis of ATP into ADP is used to perform cellular work, usually by coupling the exergonic reaction of ATP hydrolysis with endergonic reactions.
  • Sodium-potassium pumps use the energy derived from exergonic ATP hydrolysis to pump sodium and potassium ions across the cell membrane while phosphorylation drives the endergonic reaction
  • Answer 2:

BOX 1

  • Energy Coupling in Sodium-Potassium Pumps: Sodium-potassium pumps use the energy derived from exergonic ATP hydrolysis to pump sodium and potassium ions across the cell membrane.

    Cells couple the exergonic reaction of ATP hydrolysis with the endergonic reactions of cellular processes. For example, transmembrane ion pumps in nerve cells use the energy from ATP to pump ions across the cell membrane and generate an action potential. The sodium-potassium pump (Na+/K+ pump) drives sodium out of the cell and potassium into the cell. When ATP is hydrolyzed, it transfers its gamma phosphate to the pump protein in a process called phosphorylation. The Na+/K+ pump gains the free energy and undergoes a conformational change, allowing it to release three Na+ to the outside of the cell. Two extracellular K+ ions bind to the protein, causing the protein to change shape again and discharge the phosphate. By donating free energy to the Na+/K+ pump, phosphorylation drives the endergonic reaction.

BOX 2:

  • Energy Coupling in Metabolism

    During cellular metabolic reactions, or the synthesis and breakdown of nutrients, certain molecules must be altered slightly in their conformation to become substrates for the next step in the reaction series. In the very first steps of cellular respiration, glucose is broken down through the process of glycolysis. ATP is required for the phosphorylation of glucose, creating a high-energy but unstable intermediate. This phosphorylation reaction causes a conformational change that allows enzymes to convert the phosphorylated glucose molecule to the phosphorylated sugar fructose. Fructose is a necessary intermediate for glycolysis to move forward. In this example, the exergonic reaction of ATP hydrolysis is coupled with the endergonic reaction of converting glucose for use in the metabolic pathway.

BOX 3:

  • ATP in reaction coupling:

  • The formation of sucrose requires an input of energy: its ΔG is about +27 KJ/mol, (under standard conditions). ATP hydrolysis has a ΔG around -30.5 KJ/mol under standard conditions, so it can release enough energy for the synthesis of a sucrose molecule:

Add a comment
Know the answer?
Add Answer to:
KULL Illustrate the ATP hydrolysis reaction its regeneration and the AG for both reactions. Show where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction..... Thank you!!! A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H2O(1) ADP(aq) + HPO2 (aq) in a biological...

  • A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H,00) ADP(aq) + HPO- (aq) for which AGix = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG in in a biological cell in which (ATP) = 5.0 mm. (ADP) = 0.70 mM, and [HPO") = 5.0 mm. AG KJ/mol...

  • A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H,O(1) ADP(aq) + HPO (aq) in a biological cell in which for which AG x = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG [ATP] = 5.0 mm, (ADP) = 0.10 mM, and [HPO) = 5.0 mM. AGrx =...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H2O(1) ADP(aq) + HPO- (aq) - for which AG x = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG in a biological cell in which (ATP) = 5.0 mm, (ADP) = 0.90 mm, and [HPO-) = 5.0 mM. AG...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by for which AG rxn30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AGxn in a biological cell in which [ATPl-5.0 mM, [ADP] 0.50 mM, and [HPO41 5.0 mM. Number kJ/ mol Is the hydrolysis of ATP spontaneous under these conditions? O yes O no

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H,O(1) ADP(aq) + HPO- (aq) for which AG = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AG xn in a biological cell in which [ATP] = 5.0 mm, (ADP) = 0.10 mM, and (HPO 1 - 5.0 mM. AG...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq)+ H,O)ADP(aq) + HPO (aq) for which AGxn =-30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AGn in a biological cell in which 5.0 mM. 5.0 mM, [ADP) 0.10 mM, and [HPO [ATP) -36.4 kJ/mol AGn= Is the hydrolysis of ATP spontaneous...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H2O(l) —— ADP(aq) + HPO2 (aq) for which AGix = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AGrxn in a biological cell in which [ATP] = 5.0 mm, (ADP) = 0.20 mM, and [HPO2-) = 5.0 mM. AGxn= kJ/mol...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by ATP(aq) + H_2O(I) rightarrow ADP (aq) + HPO_4^2-(AQ) for which Delta G degree? = -30.5 kJ/mol at 37.0 degree C and pH 7.0. Calculate the value of Delta G ? in a biological cell in which [ATP] = 5.0mM, and [HPO_4^2-] = 5.0mM. Is the hydrolysis of ATP...

  • A critical reaction in the production of energy to do work or drive chemical reactions in...

    A critical reaction in the production of energy to do work or drive chemical reactions in biological systems is the hydrolysis of adenosine triphosphate, ATP, to adenosine diphosphate, ADP, as described by the reaction ATP(aq) + H, O(1) — ADP(aq) + HPO2 (aq) for which AGixn = -30.5 kJ/mol at 37.0 °C and pH 7.0. Calculate the value of AGrxn in a biological cell in which [ATP] = 5.0 mM, [ADP] = 0.50 mM, and [HPO2-) = 5.0 mM. AGrx...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT