Question

Q-3) ine transfer function of a system nas a zero at s = 1, and poles at s =-2 and 5 = -3. The steady state value of the resp
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giveni 3) The Loansfer function of a zero at sol system has and pales SS - 2 and Y(s) Then the at SE-3 k (3-1) Transfer Functa) Impulse response of the system: The output Cyct) the input is impulse function is Impulse response. ie when &(t) =S (H) 9(6) Response to unit xamp Here input is unit ramp. I Laplace transform unit ramp L[NCE) = x(s) S2 For the input X(t) = *(6) thc) response to the input &CE) sint By using sinusoidal steady state Analysis we know, 3(-) : (6)= A.sin(wt+0) A.lHewl sin(wf+

Add a comment
Know the answer?
Add Answer to:
Q-3) ine transfer function of a system nas a zero at s = 1, and poles...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the closed loop system defined by the following block diagram. a) Compute the transfer function...

    Consider the closed loop system defined by the following block diagram. a) Compute the transfer function E(s)/R(s). b) Determine the steady state error for a unit-step 1. Controller ant Itly Ro- +- HI- 4단Toy , c) d) e) reference input signal. Determine the steady state error response for a unit-ramp reference input signal. Determine the locations of the closed loop poles of the system. Select system parameters kp and ki in terms of k so that damping coefficient V2/2 and...

  • 1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation...

    1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation i. Using any simulation software package, plot the poles on the s-plane. ii. Using unit step input, plot the transient response when there is no additional third pole to the system. iii. Using unit step input, plot the transient response when there is an additional third pole occur at -200, -20, -10, and -2. Plot them in a single graph. Normalize all the plots...

  • Determine: 1. The transfer function C(s)/R(s). Also find the closed-loop poles of the system. 2. The...

    Determine: 1. The transfer function C(s)/R(s). Also find the closed-loop poles of the system. 2. The values of the undamped natural frequency ωN and damping ratio ξ of the closed-loop poles. 3. The expressions of the rise time, the peak time, the maximum overshoot, and the 2% settling time due to a unit-step reference signal. For the open-loop process with negative feedback R(S) Gp(S) C(s) H(s) 103 Go(s) = 1 , Gp(s)- s(s + 4) Determine: 1. The transfer function...

  • 1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be...

    1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be designed to meet the following requirements: (1) the steady-state error for a unit ramp input equals to 0.1 and (2) the closed-loop poles will be located at -1 + j1. Find K, a, and B in order to meet the specifications. (12 points) 2. Given a unity feedback system with its forward transfer function G(s) shown below: s" (s +a) Find the values of...

  • Poles and Zeros For the transfer function given: 0.85 8-44.64 G(s) = 긁+0.83 12.00 Part A-Poles Find the system pole 8 Submit Part B-Poles Find the system pole s2 Submit Part C-Zeros Find the system...

    Poles and Zeros For the transfer function given: 0.85 8-44.64 G(s) = 긁+0.83 12.00 Part A-Poles Find the system pole 8 Submit Part B-Poles Find the system pole s2 Submit Part C-Zeros Find the system zero Submit Part D-Type of Response Based on the locations af the poles and zeros, what will be the response to a unit step inpue? O Harmonic Oscillations (Marginally stable) Oscillatory motion with exponential decay tending to zero (stable O Critically damped exponential decay (stable)...

  • PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with...

    PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with a closed-loop step response that has 15% overshoot. Do the following: a. Evaluate the steady-state error for a unit ramp input. b. Design a lag compensator to improve the steady-state error by a factor of 20. c. Evaluate the steady-state error for a unit ramp input to your compensated system. d. Evaluate how much improvement in steady-state error was realized.

  • The transfer function of a position control system, with load angular position as an output and...

    The transfer function of a position control system, with load angular position as an output and motor armature voltage, is given as 1. G(s) s(s +10) For this system design the following controllers 1. Proportional controller to obtain 0.7 2. PD controller to obtain 0.7 and 2% steady-state error due to a ramp input. 3. PI controller to have a dominant pair of poles with ? = 0.7 , ??-4 rad/sec and zero steady-state error due to a ramp input...

  • The transfer function of a position control system, with load angular position as an output and...

    The transfer function of a position control system, with load angular position as an output and motor armature voltage, is given as G(s) : s(s + 10) For this system design the following controllers 1. Proportional controller to obtain { = 0.7 2. PD controller to obtain { = 0.7 and 2% steady-state error due to a ramp input. 3. PI controller to have a dominant pair of poles with { = 0.7 , wn = 4 rad/sec and zero...

  • Problem 3 A unity feedback system has the loop transfer function G(s) = Kata) s(s +...

    Problem 3 A unity feedback system has the loop transfer function G(s) = Kata) s(s + (a) Find the breakway and entry points on the real axis. (b) Find the gain and the roots when the real part of the complex roots is located at -2 (c) Sketch the root locus. Problem 4 The forward path G(s) of a unity feedback system with input R(s) and output Y (s) is given by G(o) 106I) (a) What is the type of...

  • Consider the transfer function of a DC motor given by G(s) = 1 / s(s+2) 3. Consider the transfer function of a DC motor...

    Consider the transfer function of a DC motor given by G(s) = 1 / s(s+2) 3. Consider the transfer function of a DC motor given by 1 G(s) s (s2) The objective of this question is to consider the problem of control design for this DC motor, with the feedback control architecture shown in the figure below d(t r(t) e(t) e(t) C(s) G(s) Figure 4: A feedback control system (a) Find the magnitude and the phase of the frequency response...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT