Question

A business jet has a wing area of 88.3 square meters, an aspect ratio of 8.2,...

A business jet has a wing area of 88.3 square meters, an aspect ratio of 8.2, an Oswald efficiency factor of .89, a zero-lift drag coefficient of .026, a mass of 19,000 kg, and a maximum static thrust at sea level for each engine of 61,600 N

(A) Calculate the maximum rate of climb at sea level.

(B) Calculate the maximum rate of climb at an altitude of 13 km.

(C) Estimate its absolute ceiling assuming the maximum rate of climb varies linearly with altitude and there are no pressurization/structural issues limiting the aircraft’s ceiling.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

t9DD 0 (ot6 2 00 N 1424 2. l 26。7361 19.0 ml

Add a comment
Know the answer?
Add Answer to:
A business jet has a wing area of 88.3 square meters, an aspect ratio of 8.2,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q7. Consider the twin-jet airplane described as follow: wing area = 47 m2, aspect ratio =...

    Q7. Consider the twin-jet airplane described as follow: wing area = 47 m2, aspect ratio = 6.5, Oswald efficiency factor = 0.87, weight = 103,047N, and zero-lift drag coefficient = 0.032. The airplane is equipped with two jet engines with 40,298 N of static thrust each at sea level. The thrust-specific fuel consumption is 1.0 N of fuel per newton of thrust per hour, the fuel capacity is 1900 gal, and the maximum gross weight is 136,960 N. Calculate the...

  • Consider a large jet airplane which has the following characteristics: Maximum gross weight = 130000 N...

    Consider a large jet airplane which has the following characteristics: Maximum gross weight = 130000 N General • Fuel weight = 50000 N Wing 2 Wing area = 50 m Wing aspect ratio (AR) = 6.5 Wing span efficiency factor (e) = 0.87 Aerodynamics . = MARE • Zero-lift drag coefficient = 0.032 Drag Cp = Cpo + kc where k = kı + kz kı = 0 and k3 Lift CLmax = 1.4 during flight Two turbojet engines. (thrust...

  • A Twin Engine Air craft has following Characters: Wing Area: 45 m² Gross Weight = 100000N...

    A Twin Engine Air craft has following Characters: Wing Area: 45 m² Gross Weight = 100000N aspect ratio=7.0 span efficiency factor= 0.85 Parasit drag coefficient = 0.03 Each Jet Engine produces 4000on of Thrust at sea level airplane is taking off at full gross weight and the runway has paved surface. Given that the maximum lift coefficient during ground roll is 2.5 and the pair of wings are 2-m above the ground. At sea-level conditions, a) (10 pts) determine the...

  • 2. An aircraft with Coo -0.020, k0.12 is in steady, level flight at he -30,000 ft...

    2. An aircraft with Coo -0.020, k0.12 is in steady, level flight at he -30,000 ft and Mo- me AR 08. The aircraft has a wing area of 375 ft, and it weighs 25,000 lb. Its CLmax İsl 8 a. b. c. d. e. Calculate the drag coefficient when Calculate the thrust the engine is producing. Calculate the horsepower the engine is producing Calculate the stall speed at that altitude Now the velocity is to be changed. Calculate the minimum...

  • 80 m 845 m2 7.53 Wing Span Wing Planform Area Wing Aspect Ratio Sweep angle at...

    80 m 845 m2 7.53 Wing Span Wing Planform Area Wing Aspect Ratio Sweep angle at quarter chord (0.25c) Taper ratio 33.5 0.3 A380 1500 m² Component Wetted Area Fuselage Wing 1700 m Horizontal tail Vertical tail Engines (4) 290 m² (each) 400 m² 280 m² Cruise Mach Number 0.85 Cruising Altitude 12.5 km Wing Loading 16500 N/m2) Temperature Geo potential Altitude above Sea Level -- (m) Acceleration of Gravity (m/s) Absolute Pressure -p- (104 N/m2) Density .p. (101 kg/m3)...

  • 80 m 845 m2 7.53 Wing Span Wing Planform Area Wing Aspect Ratio Sweep angle at...

    80 m 845 m2 7.53 Wing Span Wing Planform Area Wing Aspect Ratio Sweep angle at quarter chord (0.25c) Taper ratio 33.5 0.3 A380 1500 m² Component Wetted Area Fuselage Wing 1700 m Horizontal tail Vertical tail Engines (4) 290 m² (each) 400 m² 280 m² Cruise Mach Number 0.85 Cruising Altitude 12.5 km Wing Loading 16500 N/m2) Temperature Geo potential Altitude above Sea Level -- (m) Acceleration of Gravity (m/s) Absolute Pressure -p- (104 N/m2) Density .p. (101 kg/m3)...

  • A finite wing area of 1.5 ft2 and aspect ratio of 6 is tested in a...

    A finite wing area of 1.5 ft2 and aspect ratio of 6 is tested in a subsonic wind tunnel at a velocity of 180 ft/s at standard sea-level conditions. At an angle of attack of ?1°, the measured lift and drag are 0 and 0.181 lb, respectively. At an angle of attack of 2°, the lift and drag are measured as 5.0 and 0.23 lb, respectively. Calculate the span efficiency factor and the infinite-wing lift slope. (Round the final answers...

  • The large airplane has a span of 50 meters, an elliptic wing of aspect ratio 6,...

    The large airplane has a span of 50 meters, an elliptic wing of aspect ratio 6, a mass of 60,000 kg and is flying at sea level density (1.2 kg/m^3) at 100 m/s. Assume that it has a NACA 0009 (symmetric) airfoil, i. Calculate the actual lift coefficient for the wing ii. Calculate the geometric angle of attack. iii. What is the downwash angle? iv. What is the downwash velocity at the wing? v. What is the strength (circulation) of...

  • 9 Required information An airplane has a mass of 48,000 kg, a wing area of 340 m*, a maximum lift coefficient of 3.2, and a cruising drag coefficient of O.03 at an altitude of 12.000 m. Take the dens...

    9 Required information An airplane has a mass of 48,000 kg, a wing area of 340 m*, a maximum lift coefficient of 3.2, and a cruising drag coefficient of O.03 at an altitude of 12.000 m. Take the density of standard air as p1-1225 kg/m3 at sea level and p2 0.312 kg/m at 12,000 m altitude. Determine the safe takeoff speed at sea level, assuming it is 20 percent over the stall speed The safe takeoff speed at sea level...

  • Question 5 (14 marks) The following are the characteristics of a single-engine light aircraft 9.8 m...

    Question 5 (14 marks) The following are the characteristics of a single-engine light aircraft 9.8 m Wing span Wing area 15.2 m2 Height of wing 1.20 m All up weight 19.2 kN Power plant: 150 kW (sea-level) Propeller efficiency: 85% Maximum lift coefficient: 1.32 Parasite drag coefficient: 0.022 Oswald's efficiency factor: 0.88 Using the above data calculate the: a. stalling speed in km/h, (39.53 m/s, 142.3 km/h) aspect ratio, induced drag coefficient and hence total drag at Lift-off Stalling Speed...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT