Question

A diverging lens has a focal length of -20 cm. An object is placed 50 cm...

A diverging lens has a focal length of -20 cm. An object is placed 50 cm in front of the lens:

(a) Where is the image located? (in cm)

(b) What is the magnification of the image?

(c) Is the image real or virtual?

(d) Is the image erect or inverted?

Please show me how you reasoned the problem, I'm struggling a lot. Thank you!!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

focal length = -20cm. object is placed in front of the uns, so object distance u = -50cm. image distance ve = ? Now using the

Add a comment
Know the answer?
Add Answer to:
A diverging lens has a focal length of -20 cm. An object is placed 50 cm...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.) An object is placed in front of a diverging lens with a focal length of...

    1.) An object is placed in front of a diverging lens with a focal length of 17.7 cm. For each object distance, find the image distance and the magnification. Describe each image. (a) 35.4 cm location _____cm magnification _____ nature real virtual upright inverted (b) 17.7 cm location _____  cm magnification _____ nature real virtual upright inverted (c) 8.85 cm location _____ cm magnification _____ nature real virtual upright inverted 2.) An object is placed in front of a converging lens...

  • A diverging lens has a focal length of magnitude 20 cm. An object is placed 10...

    A diverging lens has a focal length of magnitude 20 cm. An object is placed 10 cm in front of the diverging lens. Calculate the magnification of the image and whether it is upright or inverted. 0.85 inverted 1.5 upright 0.52 upright 0.67 inverted 0.67 upright

  • Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10...

    Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10 cm to the right of the converging lens in problem that has a 2 cm tall object placed 12 cm to the left of a converging lens with focal length of magnitude 15 cm. Determine the location of the final image formed by both lenses (in relation to the diverging lens) and the magnification of the final image. State whether the final image is...

  • An object is placed 24.1 cm in front of a convex mirror of focal length 50...

    An object is placed 24.1 cm in front of a convex mirror of focal length 50 cm. Note: Do convex mirrors have a positive or negative focal length? What is its image position? Answer in units of cm. The magnification of the image in the previ- ous question is: With the arrangement discussed above, the image is: 1. virtual, inverted, smaller than object 2. real, erect, smaller than object 3. real, inverted, bigger than object 4. real, erect, bigger than...

  • An object is placed in front of a diverging lens with focal length of −70 cm....

    An object is placed in front of a diverging lens with focal length of −70 cm. Find the location of the image and the characteristics of the image (real or virtual, enlarged or reduced, and upright or inverted) for each object distance. Also draw the ray diagram for each object distance. a) 100 cm b) 40 cm

  • A diverging lens has a focal length of magnitude 21.2 cm. (a) Locate the images for...

    A diverging lens has a focal length of magnitude 21.2 cm. (a) Locate the images for each of the following object distances. 42.4 cm distance      cm location      ---Select---in front of the lensbehind the lens 21.2 cm distance      cm location      ---Select---in front of the lensbehind the lens 10.6 cm distance      cm location      ---Select---in front of the lensbehind the lens (b) Is the image for the object at distance 42.4 real or virtual? real virtual     Is...

  • A diverging lens has a focal length of magnitude 22.6 cm. (a) Locate the images for...

    A diverging lens has a focal length of magnitude 22.6 cm. (a) Locate the images for each of the following object distances. 45.2 cm distance cm location (behind or in front of lens) 22.6 cm distance cm location (behind or in front of lens) 11.3 cm distance cm location (behind or in front of lens) (b) Is the image for the object at distance 45.2 real or virtual? Is the image for the object at distance 22.6 real or virtual?...

  • A 4-cm tall object is placed 59.2 cm from a diverging lens having a focal length...

    A 4-cm tall object is placed 59.2 cm from a diverging lens having a focal length of -29.5 cm. a) Is the image produced by this lens virtual or real? b) Is the image inverted or upright? c) Is the image on the same side of the lens as the object or on the opposite side as the object? d) Where is the image located? (Please provide the magnitude of the position, no negative numbers) e) How tall is the...

  • The focal length of a diverging lens is negative. If f = −23 cm for a...

    The focal length of a diverging lens is negative. If f = −23 cm for a particular diverging lens, where will the image be formed of an object located 32 cm to the left of the lens on the optical axis? ______cm to the left of the lens? What is the magnification of the image? b. A small object is placed to the left of a convex lens and on its optical axis. The object is 29 cm from the...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT