Question

3. The gas phase reaction A B -C, withkCACB, is to be carried out in a steady-state PFR with feed composition of 60% A. 40% B

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Soluh Data tom the Giren Queshin d The gasphase rachon kady state PFR oth hed com pas 00 reactor so L diie dachive conversionon the ba 1 0f loo mot, we-Candau fhat 60 mol clea the eatKon ethe in PF-R and 60 % Conversfoo of-18 ccur Cal 36 So uD PF Rsubs Hftuk -he values fn above emotpom , uo Cou) s) 2u mole ofネ oftt also conJ urned along 2) WİWn B +0 paoduce product c conXA 16 LB 13 diB o、 SORCAO) dae R (Jox 60) dxi31 10 R (3000) -1 3-6 J B000 R 3v TOOOR 1000R . In 3 oo0 R. ได้ (%)m o CSTR Nowi applying peff0fnance eaiahm0f C-13 6-6 R-CA-CB CSTR 10 lo R. R 26) ( (26) C STR

Add a comment
Know the answer?
Add Answer to:
3. The gas phase reaction A B -C, withkCACB, is to be carried out in a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1: Design of isothermal reactors 30 Marks The irreversible, gas-phase reaction A+B D is to be carried out...

    Question 1: Design of isothermal reactors 30 Marks The irreversible, gas-phase reaction A+B D is to be carried out in an isotherma °C) plug-flow reactor (PFR) at 5.0 atm. The mole fractions of the feed streams are A 0 B 0.50, and inerts 0.30. The activation energy for the above reaction is 80 000 cal/mol. the pressure drop due to fluid friction in the reactor is so small that it can be ignored, perform the following tasks: 2T a s...

  • Question 4. A gas phase reaction of the type A+B - C, is to be carried...

    Question 4. A gas phase reaction of the type A+B - C, is to be carried out isothermally in a PFR. A feed consisting of 90% of A and 10% of B enters the reactor at a temperature of 27 °C and 10 atm. The reaction is second order with respect to A and zero order with respect to B. The rate constant, ka, is 1.5 dm²/mol.s. a) Calculate the volume required to achieve 60% conversion of A for an...

  • The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic...

    The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic CSTR. The feed which is at a temperature of 27oC, consists of 80% of A and the remainder inerts. The volumetric flow rate entering the reactor at this temperature is 100 l/min. The concentration of A in the feed at 27oC is 0.5 mol/liter. For 80% of the adiabatic equilibrium conversion, calculate the required reactor volume. DATA: CpA=12 J/mol.K; CpB=10 J/mol.K; CpI=15 J/mol.K deltaHrxn=-75000...

  • (3) The gas phase reaction 2A +B- C is carried out in an isothermal PFR without...

    (3) The gas phase reaction 2A +B- C is carried out in an isothermal PFR without pressure drop. At the entrance, the feed contains 1/2 molar fraction of A, 1/3 molar fraction of B and 1/6 molar fraction of inert chemical I. The entrance temperature is 500K and the entrance pressure is 16.4 atm. If the conversion of A at the exit is 0.8, what is the conversion of B?

  • 2. The irreversible gas phase reaction A B is carried out isothermally in a fluidized catalytic...

    2. The irreversible gas phase reaction A B is carried out isothermally in a fluidized catalytic CSTR. The reaction rate is first orderw.r.t.the partial pressure of A (-rA KA PA). With arn entering pressure 20 atm, an negligible pressure drop in CSTR, and 50 kg of catalyst, a conversion of 50% was realized for pure A feed. |-Fluidized hal oooo -catalyst o ojo | |,'-/ pellets Now, a PBR is connected to the downstream of this CSTR with a same...

  • An acid-catalyzed irreversible liquid-phase reaction A B is carried out adiabatically in a CSTR. The reaction is second...

    An acid-catalyzed irreversible liquid-phase reaction A B is carried out adiabatically in a CSTR. The reaction is second order in A. The feed is equimolar A and solvent (S, which contains catalyst), and enters the reactor at a total volumetric flow rate of 10 dm3/min at a concentration of A of 4 mol/L. The feed enters at 300 K. The product and reactant heat capacities are 15 cal/(mol°C), the solvent is 18 cal/(mol°C). The reaction rate constant at 300 K...

  • 2) ZA → B is a gas-phase elementary reaction carried out in a PFR. Conversion of...

    2) ZA → B is a gas-phase elementary reaction carried out in a PFR. Conversion of A = 80%. The feed is pure A. What is conversion when the molar feed rate is cut in half?

  • The elementary, reversible gas phase reaction A B is to be carried out in a CSTR with heat exchange. Pure A is fed to t...

    The elementary, reversible gas phase reaction A B is to be carried out in a CSTR with heat exchange. Pure A is fed to the reactor. The heat exchange coil in the reactor is maintained at 400K. The rate coefficient is known at 400K, but heat of reaction is unknown. Data: k1(400K) = 0.001 s.! V-1000L To=350K R-831 J/mol K h 5 mol's UA 1000 J/K Kea (450K-1 A) Calculate the conversion (X) if the steady state CSTR is operated...

  • QUESTION 2: Design of Multiple Reactors: 30 marks B +C was a a) An elementary reaction...

    QUESTION 2: Design of Multiple Reactors: 30 marks B +C was a a) An elementary reaction A reaction A B +C was carried out in a reactor system using an ideal STR followed by an ideal PER Isothermany. The rate constant is k = 0.4 min ". The volumetric flow rate is 20 L/min. The concentration of A in the feed is 5 moles/L. 1. Calculate the volume of the CSTR necessary to achieve a conversion of 50%. (7 marks)...

  • 5.33. When B is mixed with A, the liquid phase reaction A+BC rkCA has a rate...

    5.33. When B is mixed with A, the liquid phase reaction A+BC rkCA has a rate constant k 0.2 min. This reaction is to be carried out isothermally in a CSTR at steady state. The reactant A costs $2/mol and reactant B costs $0.10/mol. The product C sells for $6/mol. The cost of operating the reactor is $0.05 per liter per hour. We wish to produce 360,000 moles of C per day to meet the market demands The available reactants,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT