Question

The elementary, reversible gas phase reaction A B is to be carried out in a CSTR with heat exchange. Pure A is fed to the rea

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solvtion Reacion Reachon ocurs at 450 K Zivon R: (mol k 8.314 21o 8.3 , у іоо 450 r 4oo93 (4.croS3> Al vem ik, k.> Volume exit Volumeic Jlow rak% ing design equgchan CSTR О.osrx o.S | t--2X I - ax S78.3 % Ta Gi Headenthaley balanc CSTR Removal - Soooo SX0 9383x Q291s ON-),o 16223.82 -Soooo + 5400-191? 6-1 g- 2.291TfAn)- 80000 2 -9 กา 。dio

Add a comment
Know the answer?
Add Answer to:
The elementary, reversible gas phase reaction A B is to be carried out in a CSTR with heat exchange. Pure A is fed to t...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • . Question 2: The elementary, reversible, organic, liquid-phase reaction is carried out adiabatically in a CSTR...

    . Question 2: The elementary, reversible, organic, liquid-phase reaction is carried out adiabatically in a CSTR where 65% conversion is achiewd Ated'anonn of A and 50% excess 8, enters the reactor at 27°C with a volumetric flow rate of 2 L/s and a Cos of O.1 mol/L culate the temperature inside the reactor 2. Calculate the equilibrium conversion at the operating temperature. How close (in 3. Calculate the CSTR volume percentage) the conversion is from the equilsbrium conversion? If the...

  • The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic...

    The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic CSTR. The feed which is at a temperature of 27oC, consists of 80% of A and the remainder inerts. The volumetric flow rate entering the reactor at this temperature is 100 l/min. The concentration of A in the feed at 27oC is 0.5 mol/liter. For 80% of the adiabatic equilibrium conversion, calculate the required reactor volume. DATA: CpA=12 J/mol.K; CpB=10 J/mol.K; CpI=15 J/mol.K deltaHrxn=-75000...

  • An exothermic elementary reversible isomerisation reaction of A B in liquid phase is carried out adiabatically...

    An exothermic elementary reversible isomerisation reaction of A B in liquid phase is carried out adiabatically in a CSTR. Pure A is fed to the reactor at a concentration of 5 mollitre and feed rate of 500 mol/min. As a researcher you need to analyze the effect of different inlet temperature to the rate of reaction. The inlet temperature is varied at 50°C, 100°C and another two inlets temperature in between 70°C to 90°C. Perform your calculation based on energy...

  • The elementary gas-phase reaction A+B <----> 2C in P11-8B is now continued and carried out in...

    The elementary gas-phase reaction A+B <----> 2C in P11-8B is now continued and carried out in a packed bed reactor. The entering molar flow rates are Fao=5 mol/s, Fbo= 2Fao, and Fi=2Fao with Cao=0.2 mol/dm^3. The entering temperature is 325 K and a coolant fluid is available at 300 K. P12-9A Algorithm for reaction in a PBR with heat effects and pressure drop he elementary gas-phase reaction A+B 2C in P11-8B is now continued and carried out in packed-bed reactor....

  • Design a CSTR for the elementary consecutive gas-phase reactions A - B C. Specify the reactor...

    Design a CSTR for the elementary consecutive gas-phase reactions A - B C. Specify the reactor volume and the area of the heating coil inside the reactor for 50% conversion. a. Calculate the desired operating temperature inside the reactor. b. Calculate the volume of the reactor c. Calculate the area of the heating surface. The effluent stream should contain a ratio CB/Cc of 10. The feed is gas-phase and pure A at 400°C and 4 atm, with a molar flow...

  • R1 - LIQUID PHASE CHEMICAL REACTOR The elementary liquid phase reaction given below is carried out...

    R1 - LIQUID PHASE CHEMICAL REACTOR The elementary liquid phase reaction given below is carried out in a CSTR by isothermal operation. k > NaOAC + EtOH k = 3.59 L/mol.min NaOH + EtOAC (A) (B) (C) (D) The volume of the CSTR is 2 L and the flowrates of the feeds in the individual streams are 50 ml/min for both reactants. The concentrations of NaOH and EtoAc are 0.05 mol/L and 0.1 mol/L, respectively. [6] a) Calculate the conversion...

  • An acid-catalyzed irreversible liquid-phase reaction A B is carried out adiabatically in a CSTR. The reaction is second...

    An acid-catalyzed irreversible liquid-phase reaction A B is carried out adiabatically in a CSTR. The reaction is second order in A. The feed is equimolar A and solvent (S, which contains catalyst), and enters the reactor at a total volumetric flow rate of 10 dm3/min at a concentration of A of 4 mol/L. The feed enters at 300 K. The product and reactant heat capacities are 15 cal/(mol°C), the solvent is 18 cal/(mol°C). The reaction rate constant at 300 K...

  • PROBLEM 2 The elementary liquid phase irreversible reaction (A+B -> C) takes place in a 1...

    PROBLEM 2 The elementary liquid phase irreversible reaction (A+B -> C) takes place in a 1 m² Mixed Flow Reactor with the equimolar mixture of A and B at the volumetric feed flow rate of 0.5 m3/min, the feed concentration of A equal to 1 mol/L, and the feed temperature of 300K. When the reaction takes place under isothermal conditions at 300K the conversion of A is 30%. When the reaction takes place adiabatically the exit temperature is 350K and...

  • The irreversible, endothermic, elementary, liquid-phase reaction: 2A ---> B, is carried out adiabatically in a 100 li...

    The irreversible, endothermic, elementary, liquid-phase reaction: 2A ---> B, is carried out adiabatically in a 100 liter PRF. Species A and inert liquid are fed to the reactor with concentrations CAo = 1.5 mol/l and CIo = 1.5 mol/l, while FAo=20 mol/min. The entering temperature is 400 K. Calculate the conversion and temperature at the exit of the reactor, given the additional information below: k = 0.0003 l/(mol*min) at 300 K E= 12000 cal/(mol* K) CpA = 10 cal/(mol*K), CpB...

  • QUESTION 1: 20 marks 20 points It is planned to carry out the following second-order, elementary,...

    QUESTION 1: 20 marks 20 points It is planned to carry out the following second-order, elementary, non- catalytic gas-phase reaction in an adiabatic CSTR: A+B_C+3D. Only A and B (no inerts) are fed to the reactor at equimolar flow rates of 150 mol/min each. The rate constant is related to the temperature by Arrhenius law as follows: k = 37.68x10^10 exp(-80000/RT) L/mol.min. The heats of formation of A, B, C and D (at 298 K) in kJ/mol are -235.3, -393.5,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT