Question

A 10 L container is filled with 0.10 mol of H2(g)and heated to 2800 K causing...

A 10 L container is filled with 0.10 mol of H2(g)and heated to 2800 K causing some of the H2(g) to decompose into H(g). The pressure is found to be 3.0 atm. Find the partial pressure of the H(g) that forms from H2 at this temperature. (Assume two significant figures for the temperature.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 10 L container is filled with 0.10 mol of H2(g)and heated to 2800 K causing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • You have a 3.00-L container filled with N₂ (MM = 28.02 g/mol) at 298.15 K and...

    You have a 3.00-L container filled with N₂ (MM = 28.02 g/mol) at 298.15 K and 1.75 atm pressure connected to a 2.00-L container filled with Ar (MM = 39.95 g/mol) at 298.15 K and 2.15 atm pressure. A stopcock connecting the containers is opened and the gases are allowed to equilibrate between the two containers. What is the density of the final gas mixture? Assume ideal behavior. (Use R = 0.08206 L.atm/mol.K) (HINT: What is the total mass, m,...

  • In a 5.00 L steel container at 575 K, the partial pressures of H2(g) and O2(g)...

    In a 5.00 L steel container at 575 K, the partial pressures of H2(g) and O2(g) are respectively 18.79 and 14.25 atm. The H2(g) and the O2(g) react together to produce H2O(g). The final temperature remains at 575 K and the volume remains at 5.00 L. What is the final total pressure (in atm)?

  • When HI(g) is heated to 700 K, it reversibly decomposes to H2(g) and I2(g). The reaction...

    When HI(g) is heated to 700 K, it reversibly decomposes to H2(g) and I2(g). The reaction is- 2 HI(g) ⇌ H2(g) + I2(g). A 15.00-L vessel at 700 K initially contains HI(g) at a pressure of 4.00 atm. When equilibrium is reached, it is found that the partial pressure of H2(g) is 0.387 atm. What is the partial pressure of HI(g) at equilibrium? A) 4.00 atm B) 3.61 atm C) 3.23 atm D) 4.39 atm E) 0.387 atm

  • Consider the following reaction: 2HF(g) H2(g) + F2(g) Initially a container is filled with pure HF(g)...

    Consider the following reaction: 2HF(g) H2(g) + F2(g) Initially a container is filled with pure HF(g) at a pressure of 2 atm, after which equilibrium is reached. If y is the partial pressure of H2 at equilibrium, Express the value of Kp using y. a) b) If K = 0.01 at this temperature, calculate the equilibrium concentrations of the 3 species.

  • 4. (10 Pts) A 1.00-L flask was filled with 2.00 mol gaseous SO, and 2.00 mol...

    4. (10 Pts) A 1.00-L flask was filled with 2.00 mol gaseous SO, and 2.00 mol gaseous NO, and heated. After equilibrium was reached, it was found that 1.30 mol gaseous NO was present. Assume that the reaction: SO2(g) + NO2(g) =SO3(g) + NO(g) occurs under these conditions. Calculate the value of the equilibrium constant, Kc. 5. (12 Pts) At a particular temperature, Kc = 1.00 x 10 for the reaction H2(g) + 12(g) = 2 HI(g) In an experiment,...

  • A mixture of 0.2000 mol of CO2, 0.1000 mol of H2, and 0.1600 mol of H2O...

    A mixture of 0.2000 mol of CO2, 0.1000 mol of H2, and 0.1600 mol of H2O is placed in a 2.000-L vessel. The following equilibrium is established at 500 K: CO2(g)+H2(g)⇌CO(g)+H2O(g) A. Calculate the initial partial pressure of CO2CO2. Express your answer to three significant figures and include the appropriate units. B. Calculate the initial partial pressure of H2H2. Express your answer to three significant figures and include the appropriate units. C. Calculate the initial partial pressure of H2OH2O. Express...

  • 3. Consider the following reaction: 2HF(g) = H2(g) + F2(g) Initially a container is filled with...

    3. Consider the following reaction: 2HF(g) = H2(g) + F2(g) Initially a container is filled with pure HF(g) at a pressure of 2 atm, after which equilibrium is reached. If y is the partial pressure of H2 at equilibrium, a) Express the value of Kp using y.

  • Suppose a 500. mL flask is filled with 1.3 mol of H2 and 0.10 mol of...

    Suppose a 500. mL flask is filled with 1.3 mol of H2 and 0.10 mol of HC1. The following reaction becomes possible: H2(g) + Cl2(g)-2HCl (g) The equilibrium constant K for this reaction is 3.03 at the temperature of the flask. Calculate the equilibrium molarity of H2. Round your answer to two decimal places.

  • A sample of 1.3 mol of CO2 (g) is placed in a 5.0 L rigid container...

    A sample of 1.3 mol of CO2 (g) is placed in a 5.0 L rigid container at an initial temperature is 300 K. When 6.98 kJ of heat is added to the system (at constant volume), the temperature rises to 353 K. Calculate q, w, ∆U, ∆H, and CV. The molar heat capacity of O2(g) at constant pressure, is 31.2 J/(K mol) around room temperature. 2.5 mol of O2(g) is heated at constant pressure from 265 K to 310 K....

  • at 1000 K? for the reaction 12. The equilibrium constant, K 2 HI(g) H2(g) I2(g) is 55 at 425 C. Ifa 0.40 mol sample...

    at 1000 K? for the reaction 12. The equilibrium constant, K 2 HI(g) H2(g) I2(g) is 55 at 425 C. Ifa 0.40 mol sample of HI was introduced into a 1.00 mL. reaction vessel at 425 C, what are the equibrium concentrations of H2, 12, and HI? 13. Consider the following reaction which is at equilibrium at 25 C 2 NH3(g) + CO2(g) A-152.2 kJ Ni4(NH2CO2X) In which direction will the reaction shift if (a) the pressure is increased (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT