Question

An important application of PN diodes is their use as photodetectors. The optical radiation creates electron-hole pairs in the depletion region and regions within the diffusion lengths near the depletion edges. These e-h pairs are collected as a photocurrent. The e-h pairs are generated at the rate GL 1022 cm-3s1. Calculate the photocurrent. Consider a silicon PN diode at 300K with following parameters Equation for photocurrent calculation: AGL (W Ln Lp) A 104 um2 Na = 2 x 1016 cm-3 Nd 1016 cm3 Va -15V D 20 cm2/s Dp 12 cm2/s ??-10s tp 108 s Diode area p-side doping n-side doping Applied reverse bias Electron diffusion constant Hole diffusion constant Electron minority carrier life time Hole minority carrier life time

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
An important application of PN diodes is their use as photodetectors. The optical radiation creates electron-hole...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • this is a problem of semiconductor device and fundamentals. Problem 4: pn Junction Current Distributions Consider a...

    this is a problem of semiconductor device and fundamentals. Problem 4: pn Junction Current Distributions Consider a Si pn step junction diode maintained at room temperature, with p-side and n-side dopant concentrations NA 1016 cm3 and Np-2x1016 cm3, respectively. (You may assume that each side is uncompensated.) The minority carrier recombination lifetimes are τ,-10-6 s and τ,-10-7 s on the p-side and n-side, respectively a) Calculate the minority carrier densities at the edges of the depletion region when the applied...

  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • A silicon pn junction at T = 300 K has the following parameters: Na-5 1016 cm-?,...

    A silicon pn junction at T = 300 K has the following parameters: Na-5 1016 cm-?, N,-1 1016 cm-3, D.-25 cm3/s, D.-10 cm2/s, ?,0-5 x 10-7 s, and To 1 X 10-7 s. The cross-sectional area is A 10-3 cm2 and the forward- bias voltage is V,-0.625 V. Calculate the (a) minority electron diffusion cur- rent at the space charge edge, (b) minority hole diffusion current at the space charge edge, and (c) total current in the pn junction diode.

  • Q3 Consider a GaAs pn junction with doping concentrations Na5 x 106 cm-3 and N1016 cm-3....

    Q3 Consider a GaAs pn junction with doping concentrations Na5 x 106 cm-3 and N1016 cm-3. The junction cross-sectional area is A 103 cm2 and the applied forward-bias voltage is Va 1.10 V. Calculate the (a) minority electron diffusion cur rent at the edge of the space charge region, (b) minority hole diffusion current at the edge of the space charge region, and (c) total current in the pn junction diode.

  • Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T...

    Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T 300K. The minority carrier lifetimes in the p-side and n-side are τη-10-8 s and Tp-10-7 s, respectively. a) Calculate the minority carrier densities at the edges of the depletion region when the applied voltage (VA) is 0.6 V. of the junction, for the applied bias voltage of part (a) densities are equal in magnitude, for the applied voltage of part (a). b) Sketch the...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration in...

    XXX is 467 Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration in the n-side N, = 5x1015 cm3 and the acceptor impurity concentration in the p-side N, = XXX × 1015/cm3 Assume that the diode area A-2x10-3 cm2 and 100cm work Note that the values obtained in the calculations may not be realistic as the Matric # varies greatly. The assignment is only to test your understanding, and must be handwritten Determine the...

  • 3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...

    3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" +...

  • 3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on t...

    3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on the p-side and donor concentration of Nj on the n-side. The diode is forward biased and has a voltage of 0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time, T, depends on the total dopant concentration, Ndopant (cm), through the following approximate empirical relation (5x 10-7)/(1 + 2 10-17N1°pan.) where T is in seconds. (a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT