Question

A driving force of the form F(t) = (0.215 N) sin (2 ft) acts on a weakly damped spring oscillator with mass 6.86 kg, spring c
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A driving force of the form F(t) = (0.215 N) sin (2 ft) acts on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A driving force of the form F(t) = (0.212 N) sin (2xft) acts on a weakly...

    A driving force of the form F(t) = (0.212 N) sin (2xft) acts on a weakly damped spring oscillator with mass 6.98 kg, spring constant 362 N/m, and damping constant 0.261 kg/s. What frequency fo of the driving force will maximize the response of the oscillator? fo = Hz Find the amplitude Ao of the oscillator's steady-state motion when the driving force has this frequency Find the amplitude Ap of the oscillator's steady-state motion when the driving force has this...

  • ineers can determine properties of a structure that is modeled as damped spring oscillator-such as a...

    ineers can determine properties of a structure that is modeled as damped spring oscillator-such as a bridge-by applying a driving force to it. A weakly damped spring oscillator of mass 0.242 kg is driven by a sinusoidal force at the oscillator's resonance frequency of 34.0 Hz. Find the value of the spring constant Number N/ m The amplitude of the driving force is 0.471 N and the amplitude of the oscillator's steady-state motion in response to this driving force is...

  • Please don't answer if you are unsure or inexperienced! People are paying their hard-earned money for...

    Please don't answer if you are unsure or inexperienced! People are paying their hard-earned money for this service! Engineers can determine properties of a structure that is modeled as a damped spring oscillator, such as a bridge, by applying a driving force to it. A weakly damped spring oscillator of mass 0.225 kg is driven by a sinusoidal force at the oscillator's resonance frequency of 28.0 Hz. Find the value of the spring constant. spring constant: N/m The amplitude of...

  • A 0.500 kg mass is attached to a spring of constant 150 N/m. A driving force...

    A 0.500 kg mass is attached to a spring of constant 150 N/m. A driving force F(t) = ( 12.0N) cos(ϝt) is applied to the mass, and the damping coefficient b is 6.00 Ns/m. What is the amplitude (in cm) of the steady-state motion if ϝ is equal to half of the natural frequency ϝ0 of the system?

  • Discuss the effect of the frequency of the driving force on the amplitude and phase of...

    Discuss the effect of the frequency of the driving force on the amplitude and phase of the oscillator, by deriving the solution of the relevant differential equation. A spring stretches by 1.96 m when a 2 kg mass is attached. The system is then submerged in liquid which imparts a damping force numerically equal to 4 times the velocity of the mass. Find the value of the steady state solution after T/2 second if an external force f(t)= 2sin 2t(kg.m/sec2)...

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mx+cx + kx = A sin(at) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor 5 and the un-damped natural frequency Using the given formulas for...

  • Problem 5: A block weighing 40.0 N is suspended from a spring that has a force...

    Problem 5: A block weighing 40.0 N is suspended from a spring that has a force constant of 200 N/m. The system is undamped (b 0) and is subjected to a harmonic driving force of frequency 10.0 Hz, resulting in a forced-motion amplitude of 2.00 cm. (a) Determine the maximum value of the driving force. The same system of block and spring are now moving in a fluid with damping coefficient b25 kg/s. The system is driven by an external...

  • 1. An ideal (frictionless) simple harmonic oscillator is set into motion by releasing it from rest...

    1. An ideal (frictionless) simple harmonic oscillator is set into motion by releasing it from rest at X +0.750 m. The oscillator is set into motion once again from x=+0.750 m, except the oscillator now experiences a retarding force that is linear with respect to velocity. As a result, the oscillator does not return to its original starting position, but instead reaches = +0.700 m after one period. a. During the first full oscillation of motion, determine the fraction of...

  • Problem 15. (20 pts) Consider a damped driven oscillator with the following parameters s-100 N/m b=0.5kg/s...

    Problem 15. (20 pts) Consider a damped driven oscillator with the following parameters s-100 N/m b=0.5kg/s m= 1 kg Fo=2N A) Find the resonant frequency, w. B) Find the damping rate y C) What is the quality factor Q for this oscillator? D) Is this oscillator lightly damped, critically damped, or heavily damped? E) Find the steady state amplitude when the oscillator is driven on resonance (Ω=w). F) Find the steady state amplitude when Ω_w+γ/2. G) Find the average power...

  • 3. A damped harmonic oscillator is driven by an external force of the form mfo sin...

    3. A damped harmonic oscillator is driven by an external force of the form mfo sin ot. The equation of motion is therefore x + 2ßx + ω x-fo sin dot. carefully explaining all steps, show that the steady-state solution is given by x(t) A() sin at 8) Find A (a) and δ(w).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT