Question

Two masses, one is m1=2.0 kg and another one m2 = 3.0 kg are connected by...

Two masses, one is m1=2.0 kg and another one m2 = 3.0 kg are connected by a thin string running over a massless pulley. The mass m2 is hanging above the ground and pulling another mass over a 57.27 degree ramp with acceleration 0.7 m/s2. calculate mu_k.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m2g - T = m2a

T - m1gsin(57.27)- um1gcos(57.27) = m1a

=> m2g - m1gsin(57.27)- um1gcos(57.27) = (m1+m2)a

=>  m2g - m1gsin(57.27) - (m1+m2)a = um1gcos(57.27)

=> u = ( m2g - m1gsin(57.27) - (m1+m2)a )/ (m1gcos(57.27))

=> u = (3*9.8 - 2*9.8*0.841 - (2+3)*0.7 ) /( 2*9.8*0.540) = 0.88

Add a comment
Know the answer?
Add Answer to:
Two masses, one is m1=2.0 kg and another one m2 = 3.0 kg are connected by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • show work and round 0.0001 Question 9 (1 point) A mass m1=1.5 kg rests on a...

    show work and round 0.0001 Question 9 (1 point) A mass m1=1.5 kg rests on a 30 degree ramp with a coefficient of kinetic friction 0.40. Mass m1 is tied to another mass m with a string which runs over a frictionless pulley. Mass m is hanging above the ground. The acceleration of masses is measured 2.94 m/s2. What is m? Your Answer: units Answer Question 11 (1 point) Two masses, one is m1-2.0 kg and another one m2 =...

  • Two blocks of masses M1 and M2 are connected by a massless string that passes over...

    Two blocks of masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown in the figure. M2. which has a mass of 13.5 kg, rests on a long ramp of angle θ=15.5°. Friction can be ignored in this problem. Find the value of the mass Mi for which the two blocks are in equilibrium (i.e., not accelerating). 

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=42.5 with coefficient of kinetic friction μ1=0.205. M2 has a mass of 7.25 kg and is on an incline of θ2=31.5 with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 41.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 6.25 kg and is on an incline of 31.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 47.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 8.05 kg and is on an incline of 33.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • 4. Two unequal masses m1 = 10 kg and m2= 30 kg  initially at rest are connected...

    4. Two unequal masses m1 = 10 kg and m2= 30 kg  initially at rest are connected by an ideal string that passes over a pulley whose mass and friction are negligible as shown in the figure below. Determine: a) The acceleration of the masses. b) The tension on the connecting string. c) The speed of m2 after it has descended 2.0 m.

  • A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.7 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. How much work is done by the normal force on m1? What is the final speed of the two blocks? What is the tension in the string as the block falls? The work done...

  • Two blocks of masses M and M2 are connected by a massless string that passes over...

    Two blocks of masses M and M2 are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 25.5 kg, rests on a long ramp of angle θ-33.5. Friction can be ignored in this problem Find the value of the mass M1 for which the two blocks are in equilibrium (i.e. not accelerating) Number kg figure not to scale

  • Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by...

    Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by a string over a pulley that is frictionless with negligible mass. The 50 kg block slides on a 37 degree incline that has a coefficient of kinetic friction of 0.25. This block is also attached to a wall at the base of the incline by an ideal spring that has a spring coefficient of 100 N/m. The system is released from rest with a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT