Question

A block of mass m = 0.672 kg is fastened to an unstrained horizontal spring whose...

A block of mass m = 0.672 kg is fastened to an unstrained horizontal spring whose spring constant is k = 97.0 N/m. The block is given a displacement of +0.162 m, where the + sign indicates that the displacement is along the +x axis, and then released from rest. (a) What is the force (with sign) that the spring exerts on the block just before the block is released? (b) Find the angular frequency of the resulting oscillatory motion. (c) What is the maximum speed of the block? (d) Determine the magnitude of the maximum acceleration of the block.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given,

The mass of a block, m = 0.672 kg

The spring constant, k = 97 N/m

The displacement, x = 0.162 m

a)

The force, F = - k x

= - 97 * 0.162

= 15.714 N

The negative sign indicates that the force is restoring.

b)

We know,

The spring constant, k = m * 2

= √ (k / m)

= √ (97 / 0.672)

= 12.014 rad/s

c)

The maximum velocity, V max = A *

= 0.162 * 12.014

= 1.946 m/s

d)

The maximum acceleration, amax = 2 *A

= (12.014)2 * 0.162

= 23.382 m/s2

  

Add a comment
Know the answer?
Add Answer to:
A block of mass m = 0.672 kg is fastened to an unstrained horizontal spring whose...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force...

    A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 300 N/m. The block is pulled from its equilibrium position at x = 0 m to a displacement x = + 0.090 m and released from rest t=0 The block then executes SHM along the x-axis horizontal. (a) What is the maximum acceleration and velocity?

  • A block whose mass m is 0.5 kg is fastened to a spring whose spring constant...

    A block whose mass m is 0.5 kg is fastened to a spring whose spring constant is K = 12.5N/m. The block is pulled a distance 0.05 m from its equilibrium position at x = 0 on a frictionless surface and released from rest at t=0. a) Angular frequency? (Include the symbol and unit of measurement ) b) Frequency? (Include the symbol and unit of measurement ) c) Period? (Include the symbol and unit of measurement ) d) Amplitude? (Include...

  • a block whose mass m is 0.65 kg is fastened to a spring whose spring constant...

    a block whose mass m is 0.65 kg is fastened to a spring whose spring constant k =65 n the block is pulled a distance x=11cm from its equilibrium position at x=0 on a frictionless surface and released from rest at t=0. what are the angular, f, t? what is the amplitude? PE?KE?Etotal at t=T/6 Vmax? where the block when it occurs

  • A block of mass m is 650 g which is tied to a spring whose spring...

    A block of mass m is 650 g which is tied to a spring whose spring constant is 62 N/m. The block is pulled a distance x=11 cm from its equilibrium position at x=0 on a frictionless surface and released from rest at t=0 s. What are the angular frequency, the frequency, and the period of the resulting motion? What is the amplitude of the oscillation? What is the maximum speed Vm of the oscillating block, and where is the...

  • a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose...

    a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is 450 N. The block is pulled from its equilibrium position at x=0.000 m to a position x=+0.080 m and is released from rest. The block then executes harmonic motion along the horizontal x-axis. The maximum kinetic energy of the system is closest to _____?

  • A 0.39-kg block on a horizontal frictionless surface is attached to an ideal spring

    A 0.39-kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is 540 N / m. The block is pulled from its equilibrium position at x=0.000 m to a displacement x=+0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the block's position is x=0.057 m, its kinetic energy is closest toA. 1.0 J.B. 0.85 JC. 0.80 JD. 0.95 J.E. 1.1 J.

  • A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to...

    A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to a spring (k = 750 N/m). The system is initially at rest and is in equilibrium MI Second DIOCK (M=1.5 kg) approaches with a speed of 3.5 m/s and undergoes all inelastic collision with the first block (i.e.. they stick together after the collision). (a) What is the amplitude of the resulting simple harmonic motion (in cm)? (b) What is the angular frequency (w)...

  • (10%) Problem 4: A mass m= 3.6 kg is at the end of a horizontal spring...

    (10%) Problem 4: A mass m= 3.6 kg is at the end of a horizontal spring of spring constant k=185 N/m on a frictionless horizontal surface. The block is pulled, stretching the spring a distance A = 5.5 cm from equilibrium, and released from rest. A 17% Part (a) Write an equation for the angular frequency w of the oscillation. HA17% Part (b) Calculate the angular frequency w of the oscillation in rad/seconds. A 17% Part (c) Write an equation...

  • A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring...

    A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring constant is k = 600 N/m. The block is pulled to the right until it is a distance of 0.08 m from the unstrained position and released from rest. What is the kinetic energy of the block when it is 0.06 m from the unstrained position?

  • A 2.60-kg block is attached to a horizontal spring that has a spring constant of 259...

    A 2.60-kg block is attached to a horizontal spring that has a spring constant of 259 N/m. At the instant when the displacement of the spring from its unstrained length is -0.115 m, what is the acceleration a of the object? In your answer, be sure to include the proper plus or minus sign. the tolerance is +/-9%

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT